Почему проворачивает шатунные вкладыши или вкладыши коленвала
10374 | 24.04.2018
Вкладыши шатунов или коленвала являются подшипниками скольжения, на которые дополнительно подается моторное масло из системы смазки двигателя. Данное решение позволяет нагруженным деталям свободно и легко перемещаться, при этом достигается такое сопряжение нагруженных элементов, в котором отсутствуют зазоры и люфты. Под такими подшипниками скольжения следует понимать высокопрочный стальной лист особой формы, на который нанесено специальное антифрикционное покрытие.
Проворачивание шатунных вкладышей или вкладышей коленвала является серьезной неисправностью, которую необходимо устранять незамедлительно.
Почему проворачивает вкладыши?
Вкладыши в двигателе установлены в специальные установочные места (постель вкладыша). Установка предполагает особую фиксацию, так как вкладыши имеют в своем теле отверстия, что позволяет подавать на них моторное масло. Указанные отверстия должны четко совпадать с отверстиями, которые высверлены в самих деталях для прохода смазки. Также фиксация вкладыша необходима с учетом того, что во время работы двигателя возникает трение по поверхностям сопряженных элементов.
С учетом вышеприведенной информации становится понятно, что если провернуло шатунный вкладыш, причина может заключаться в следующем:
- недостаточная фиксация вкладыша;
- сильное трение по поверхности вкладыша;
Как известно, трение возникает в результате скольжения двух тел по отношению друг к другу при наличии определенной нагрузки. Общая величина силы трения будет зависеть от величины нагрузки на трущуюся пару, а также от коэффициента трения. Для того чтобы снизить силу трения при изготовлении деталей применяются специальные антифрикционные материалы, которые имеют низкий коэффициент трения.
Что касается вкладыша, антифрикционный материал наносится на его поверхность. Коленвал по отношению к вкладышам совершает вращательное движение, в месте сопряжения вкладыша и коленчатого вала возникает сила трения, которая стремится провернуть вкладыши по отношению к их установочным местам.
Становится понятно, что избыточное трение или недостаточно надежная фиксация (слабый натяг), являются основными причинами, по которым не удается удержать вкладыш на его посадочном месте. Отметим, что во время изготовления двигателя на заводе недостаточный натяг вкладышей при сборке ДВС встречается крайне редко. Чаще проблемы с коренными или шатунными вкладышами появляются после того, как двигатель ремонтировался. Другими словами, неправильный подбор ремонтных вкладышей и другие дефекты, которые не позволяют добиться необходимого натяга, приводят к проворачиванию. Так как на КШМ воздействуют неравномерные нагрузки, вкладыши с ослабленной посадкой начинают вибрировать, масляная пленка на их поверхности разрушается, вкладыш может «прихватить». В такой ситуации проворачивание неизбежно, так как фиксирующий усик попросту не способен противостоять моменту проворачивания на самом вкладыше.
Как уже было сказано, еще одной причиной проворачивания вкладышей двигателя является превышенный момент трения, то есть нарушаются расчетные условия работы самих подшипников скольжения. Нормальная работа вкладышей предполагает так называемое жидкостное трение, то есть поверхность вкладыша и шейку коленчатого вала разделяет масляная пленка. Это позволяет избежать прямого контакта нагруженных деталей, обеспечивает необходимую смазку и охлаждение, минимизирует трение.
Вполне очевидно, что если масляная пленка будет иметь недостаточную толщину или прорвется, коэффициент трения начнет увеличиваться. Работа сопряженных деталей, которые испытывают постоянную нагрузку, в подобных условиях будет означать, что проворачивающий момент увеличился. Если проще, чем больше сила трения, тем сильнее возрастают риски проворачивания вкладышей коленвала при таких увеличенных нагрузках.
Рост нагрузок в паре вкладыш-коленвал приводит к уменьшению толщины масляной пленки или к полному разрыву (сухое трение). Параллельно увеличению силы трения происходит усиленное выделение тепла, в области трения возникают локальные перегревы. При повышении нагрева нарушается температурная стабильность масла, толщина масляной пленки еще больше снижается, вкладыш может прихватывать к поверхности шейки коленчатого вала.
Также следует добавить, что толщина масляной пленки между сопряженными деталями напрямую зависит от того, с какой скоростью указанные детали перемещаются относительно друг друга (гидродинамическое трение). Чем быстрее детали двигаются, тем интенсивнее масло попадает в зазор, который присутствует между трущимися элементами. Получается, создается более толстый масляный клин-пленка по сравнению с такой же пленкой на меньшей скорости движения сопряженных деталей. При этом необходимо учитывать тот факт, что увеличение скорости движения деталей увеличивает и силу трения, а также растет нагрев от такого трения. Это значит, что температура моторного масла начинает повышаться, смазка разжижается, толщина пленки становится меньше.
Еще на силу трения оказывает влияние то, с какой точностью изготовлены поверхности сопряженных деталей, от степени шероховатости указанных поверхностей и т.д. Если, например, поверхность вкладыша или шейки окажется неровной, тогда возникнут зоны, в которых возникнет практически сухое трение или детали будут контактировать в условиях недостаточной толщины масляной пленки. Параллельно такие зоны сухого трения могут возникать и в тех случаях, когда в моторном масле присутствуют механические частицы, то есть масло загрязнено.
По указанным причинам после сборки нового ДВС или капитального ремонта двигателя силовой агрегат должен пройти процесс обкатки, который предполагает умеренные нагрузки и частую смену моторного масла. Дело в том, что нагруженные пары должны приработаться друг к другу, так как притирка постепенно нивелирует возможные имеющиеся микродефекты, которые оказывают влияние на эффективность образования и последующую стабильность образованной масляной пленки.
Добавим, что определенное влияние оказывает и вязкость масла в двигателе. Более вязкие масла вызывают увеличенный момент трения в нагруженных парах. Параллельно с этим толщина пленки вязкого масла также больше в месте сопряжения деталей. Однако это не значит, что нагруженные детали будут защищены от повышенного или сухого трения. Дело в том, что вязкая смазка может просто не доходить до места трения в необходимом количестве, что приводит, в свою очередь, к уменьшению толщины пленки или даже ее разрыву.
По указанной причине не так просто дать ответ, какое масло лучше применительно к вкладышам и их проворачиванию с учетом только одного показателя вязкости. Не следует забывать о том, что важнейшей характеристикой является также смазывающая способность масла, то есть свойство смазки сцепляться с металлическими поверхностями. Следует учитывать и стабильность пленки того или иного масла в условиях различных нагрузок и температур.
Последствия проворота вкладышей
Начнем с того, что проворачивание шатунных вкладышей двигателя при своевременном определении поломки является менее серьезной проблемой по сравнению с проворачиванием коренных вкладышей коленвала. Если же проблему выявили поздно, тогда последствия для ДВС могут быть разными. Бывает так, что после проворачивания шатунного вкладыша двигателю может понадобиться дорогостоящий капитальный ремонт.
Распространена и такая ситуация, когда провернутый шатунный вкладыш попросту меняют на новый и двигатель работает дальше. Отметим, что делать так не рекомендуется по причине того, что ресурс отремонтированной таким образом сопряженной пары шатун-шейка коленвала может быть сильно сокращен (на 60-70%). Более приемлемым вариантом принято считать подход, когда меняется шатун, в котором провернуло вкладыш. Также шатун часто подлежит замене и по причине того, что в результате проворачивания вкладыша ломается замок шатуна. Оптимальным же способом ремонта принято считать расточку коленвала и замену вкладышей/шатунов.
Шлифовка коленвала после проворачивания вкладыша обычно является необходимой операцией, так как на шейке появляются задиры. После разборки двигателя коленчатый вал необходимо промерять, после чего осуществляется его расточка с учетом последующей установки новых вкладышей ремонтного размера. Только так удается добиться необходимого состояния поверхностей и правильного натяга вкладыша после установки.
Что в итоге
С учетом приведенной выше информации можно сделать вывод о том, что появление стука в двигателе является поводом для немедленного прекращения эксплуатации ТС. Также следует учитывать, что на состояние вкладышей сильно влияет и температурный режим работы силового агрегата. Другими словами, перегрев двигателя может привести к проворачиванию шатунных или коренных вкладышей, заклиниванию мотора и т.д. В таком случае двигатель может полностью прийти в негодность, так как разбивается постель коленвала, выходит из строя сам коленчатый вал, блок цилиндров и т.д.
Что касается моторного масла, необходимо использовать только те ГСМ, которые соответствуют всем требованиям и необходимым допускам завода-изготовителя силового агрегата. Также масло и масляный фильтр необходимо своевременно менять, не допускать попадания грязи и механических частиц в смазку. Повышенного внимания заслуживает и сама система смазки, так как снижение производительности или неисправности могут привести к масляному голоданию, в результате чего существенно повышается риск проворачивания вкладышей.
Напоследок добавим, что бензиновый двигатель нуждается в прогреве после холодного запуска, затем ездить необходимо без нагрузок до момента выхода силовой установки на рабочие температуры. В случае с дизелем мотор прогревается в движении, до полного прогрева не рекомендуется резко нагружать агрегат. Также следует помнить, что как новый двигатель, так и мотор после ремонта нуждается в обкатке, так как нагруженные пары и сопряженные элементы нуждаются в притирке.
Разработка вкладышей для современных двигателей
Об авторе: Др. Дмитрий Копелиович.
Зам. Ген. Директора компании King Engine Bearings Ltd. (Израиль) по исследованиям и разработкам.
Ведущий мировой эксперт по проектированию, технологиям производства и материалам для вкладышей двигателей внутреннего сгорания.Основатель и владелец SubsTech (Substances & Technologies), www.substech.com– ведущего профессионального вебсайта по технологии материалов.
Основатель и владелец Smooth Sliding (www.smoothsliding.com), инженерной консалтинговой компании, предоставляющей услуги по вопросам функционирования вкладышей двигателей и других гидродинамических подшипников.Автор многочисленных научных и инженерных публикаций и патентов.
1. Двигатели и вкладыши
Первый рабочий двигатель внутреннего сгорания (ДВС) был запатентован в 1860 году бельгийским инженером Жаном Жозефом Этьеном Ленуаром.
Его термодинамический цикл был менее эффективен, чем в более поздних двигателях, изобретенных Отто и Дизелем. Однако основные механические части ранних двигателей были теми же: цилиндр, поршень, шатун, коленчатый вал, маховик и вкладыши (коренной и шатунный).
Источником механической энергии вращающегося колен вала является процесс горения топливно-воздушной смеси, протекающий внутри цилиндра. Образующиеся в результате горения газы увеличивают давление в цилиндре. Давление действует на поршень, производящий возвратно-поступательное движение вдоль оси цилиндра. Поршень соединен с шатунной шейкой колен вала посредством шатуна. Вместе они образуют кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня во вращательное движение колен вала.
Шатунные вкладыши обеспечивают вращение шатунной шейки внутри шатуна.
Функция коренных вкладышей, установленных в корпусе блока цилиндров, поддерживать вращающийся колен вал.
Поразительно, что, несмотря на огромный прогресс в конструкции двигателей, достигнутый за последние 150 лет, основные термодинамические принципы и механическая структура ДВС остались неизменными.
Конструкция вкладышей также принципиально не изменилась за это время. Фактически вкладыши были изобретены задолго до изобретения ДВС. Они использовались в паровых двигателях, работавших на тех же принципах преобразования возвратно-поступательной энергии во вращательную.
С самого начала вкладыши работали со смазкой. Вначале это был жир животного происхождения, а позже – масло.
Автомобильные двигатели смазываются моторным маслом, а вкладыши к ним могут быть принципиально отнесены к гидродинамическим подшипникам, то есть к подшипникам, работающим в режиме гидродинамического трения, при котором поверхности подшипника и вала разделены масляной пленкой, образующейся в результате вращения вала [1].
К сожалению гидродинамическая смазка в чистом виде является лишь идеальной ситуацией, недостижимой в реальных двигателях. Непосредственный контакт между поверхностями вкладыша и вала происходит довольно часто.
Однако, металлический контакт — это не единственная проблема, с которой должны справляться вкладыши. В процессе работы они подвергаются нагрузкам, образующимся в цилиндре и передаваемым шатуном. Поскольку процесс сгорания является циклическим, нагрузки также имеют циклический характер. Материал вкладыша работает в условиях переменного нагружения, который может вызвать усталостное разрушение.
Нежелательные условия непосредственного (не гидродинамического) трения в сочетании со значительными циклическими нагрузками особенно критичны для высоко нагруженных современных двигателей, работающих на высоких оборотах, имеющих высокие показатели удельной литровой мощности (отношение мощности к объему двигателя).
Конструкция ДВС находится в условиях постоянного развития и совершенствования. Особенно это касается двигателей гоночных автомобилей, находящихся на переднем крае этих инженерных тенденций. Гонки всегда служили источником, стимулом и испытательным полигоном для усовершенствований автомобильных двигателей.
Первая в истории авто гонка (Indy 500) была проведена в Индианаполисе в 1911 году. Гонку выиграл Рэй Харроун со средней скоростью 123 км/ч [2]. Его автомобиль (Стоддард-Дэйтон) имел 6 цилиндровый двигатель, развивавший мощность 50 л.с. при объеме цилиндров 477 куб. дюймов (7.82 л). То есть удельная литровая мощность была около 6.4 л.с./л.
Современный двигатель Chevrolet Indy V6 имеет объем 134.3 куб. дюйма (2.2 л) и развивает мощность до 700 л.с. Таким образом, его удельная литровая мощность равняется 318 л.с/л.
Этот параметр в 50 раз больше, чем в двигателе 1911 года. Современный двигатель в 3.5 раза меньше, но при этом в 14 раз мощнее.
Конечно, такая огромная разница в показателях двигателя требует более совершенных вкладышей.
Следующие требования к геометрии, конструкции и материалам вкладышей, выдвигаемые тенденциями развития современных двигателей, рассматриваются в этой статье:
-
Прочность материала вкладыша достаточная для безотказной работы в условиях циклических нагрузок.
-
Антифрикционные свойства материалов вкладыша, обеспечивающие износостойкость, снижение трения и предотвращение схватывания.
-
Геометрия вкладыша, обеспечивающая стабильный режим гидродинамической смазки.
Приведенные аспекты функционирования вкладышей рассмотрены в свете тенденций развития современных двигателей.
2. Объемная эффективностьОбъемная эффективность — это отношение объема топливной смеси, входящей в цилиндры к рабочему объему двигателя.
Факторы, снижающие эффективность:
— Ограничения при впуске воздуха.
— Ограничения при выпуске выхлопных газов.
— Нагрев входящей смеси в цилиндрах.
При полной мощности и полностью открытых заслонках объемная эффективность двигателей без турбо наддува достигает 80%. В гоночных двигателях этот параметр может превышать 100%.
Следующие методы используются для повышения объемной эффективности:
-
Перекрытие клапанов. Этот метод повышения эффективности особенно результативен при высоких оборотах.
-
Инерционный наддув. В этом методе для повышения давления впускаемого воздуха используется инерция воздушного потока. И этот метод наиболее эффективен на высоких оборотах двигателя.
Увеличение энергии горения и более высокое давление воздуха повышают давление газов в цилиндре. В результате повышается нагрузка на верхний шатунный и нижние коренные вкладыши.
Вкладыши в двигателях с большей объемной эффективностью работают в условиях повышенной циклической нагрузки, что предъявляет требования к усталостной прочности материалов вкладышей.
3. Принудительное нагнетаниеПринудительное нагнетание воздуха (наддув) это один из наиболее эффективных методов повышение мощности и крутящего момента двигателей.
Наддув позволяет увеличить массу воздуха, входящего в цилиндры.
Соответственно увеличивается масса впрыскиваемого и сгораемого в каждом цикле топлива. В результате мощность и крутящий момент двигателя с принудительным нагнетанием воздуха больше, чем в двигателе того же объема, но без наддува.
Типичный уровень давления воздуха, производимое нагнетателем, 0.5-1 бар. Однако в двигателях гоночных автомобилей давление может достигать 4.8 бар (Драгстер).
В современных гибридных двигателях Формулы 1 давление достигает 3.5 бар. Давление в цилиндре в результате доходит до 200 бар, что в три раза выше максимального давления в цилиндрах двигателей без принудительного нагнетания.
Высокое давление в цилиндрах двигателей с наддувом передается посредством шатуна вкладышам, повышая вероятность усталостного разрушения. Кроме того, повышение нагрузок на вкладыш приводит к снижению толщины масляной пленки и может вызвать металлический контакт вкладыша с валом.
4. Степень сжатия и октановое числоТермодинамический анализ ДВС показывает, что к.п.д. двигателя определяется его степенью сжатия. Одно и то же количество топлива, сгораемого в одном цикле, производит больше мощности в двигателе, имеющем выше степень сжатия.
Поэтому с любой точки зрения (мощность, расход топлива, снижение выхлопа в атмосферу, стоимость) степень сжатия должна быть максимально возможной.
Однако величина степени сжатия ограничена повышенной вероятностью детонации двигателя. Детонация — это аномально быстрое горение топлива в цилиндре. Она производит экстремально высокие скачки давления. Двигатель, что называется, стучит. Параметром топлива, показывающем вероятность детонации, является октановое число.
Октановая шкала была изобретена в 1927 году Грэмом Эдгаром. На тот момент среднее автомобильное топливо имело октановое число 50. Такое топливо позволяло увеличить степень сжатия двигателя до 4-4. 5:1.
К настоящему времени октановое число бензина выросло почти вдвое. Примерно в той же пропорции выросли коэффициент сжатия и к.п.д. двигателей.
Современное топливо для гоночных автомобилей, содержащее метанол или этанол, может иметь октановое число, превышающее 100. Такое топливо не приводит к детонации при степени сжатия до 15:1.
Что касается эффекта повышения степени сжатия на работу вкладышей, то он подобен эффекту наддува. Более сжатая воздушно-топливная смесь производит давление перед началом горения. И сам процесс горения более энергетически эффективен. Образующиеся в процессе горения газы разогреваются до большей температуры, что увеличивает так же их давление и, в конечном счете, нагрузку на вкладыши.
У верхних шатунных и нижних коренных вкладышей увеличивается риск усталости материала и перехода гидродинамического режима трения в смешанный.
5. Отношение хода поршня к диаметру цилиндра
Объем двигателя определяется величинами хода поршня и диаметром цилиндра. На первый взгляд количество энергии, получаемой в одном цикле горения, просто пропорционально массе топлива (то есть объему двигателя). Однако более длинные цилиндры обеспечивают меньшие термические потери благодаря меньшей площади поверхности теплопереноса. Поэтому двигатели с большим соотношением между ходом поршня и диаметром цилиндра (S/B), имеют выше к.п.д. и производят больше механической энергии.
Кроме того, более длинные цилиндры обладают повышенным эффектом продувки. В таких цилиндрах во время перекрытия клапанов свежий воздух выталкивает сгоревшие газы, не смешиваясь с ними.
Поэтому, в низкооборотных двигателях высокие значения S/B предпочтительны. Обычно значение S/B находится в пределах 1-1.5.
Двигатели гоночных автомобилей, где необходима максимальная мощность, работают на очень высоких скоростях, достигающих 18,000 об/мин. При высоких скоростях значительная часть генерируемой энергии расходуется на ускорение и замедление частей двигателя (шейка шатуна, поршень, шатун). Эти части создают силы инерции, величина которых, пропорциональна квадрату скорости вращения.
Более короткий ход поршня позволяет снизить силы инерции.
Величина S/B влияет на работу вкладышей. Ee уменьшение фактически означает увеличение площади поверхности поршня, а значит и силы давления газов, передаваемой на вкладыши посредством шатуна.
Повышение нагрузки на вкладыши может вызвать его выход из строя из-за усталости. Повышенная нагрузка также снижает величину масляной пленки и повышает износ.
6. Скорость вращения
Силы инерции пропорциональны скорости вращения в квадрате. При высоких скоростях вращения (в основном характерных для гоночных двигателей) величины сил инерции, развиваемых вращающимися, ускоряющимися и замедляющимися деталями, могут достичь уровня сил, генерируемых горящими газами в цилиндрах.
Однако в отношении вкладыша, направление этих сил противоположно направлению силы давления газов. Это означает, что равнодействующая сила, действующая на верхний шатунный вкладыш при высоких скоростях вращения ниже силы при низких скоростях.
Этот эффект играет положительную роль, так как он снижает риск усталостного напряжения верхнего шатунного вкладыша.
С другой стороны, нижний шатунный вкладыш, не нагруженный при низких и средних скоростях вращения, в высокоскоростных двигателях испытывает значительную нагрузку, производимую инерционными силами. При определенных условиях эта нагрузка может превысить предел усталости материала вкладыша, и он выйдет из строя.
Силы инерции могут «перевернуть» распределение удельной нагрузки не только в шатунных, но также и в коренных вкладышах.
При высоких скоростях верхний коренной вкладыш становится нагруженным. Эффект увеличения удельной нагрузки дополнительно усиливается тем, что площадь рабочей поверхности верхнего коренного вкладыша уменьшена на величину площади масляной канавки и масляного отверстия.
7. Вязкость маслаМоторное масло обеспечивает условия гидродинамического смазки, снижает трение и удаляет тепло, генерируемое вкладышами.
Индекс вязкости масла является параметром, определяющим величину гидродинамического трения и также величину гидродинамической подъемной силы, противодействующей внешней силе, действующей на вкладыши со стороны коленчатого вала. Эта гидродинамическая сила не позволяет валу приблизиться вплотную к поверхности вкладыша. Более вязкое масло производит большую гидродинамическую силу, которая остается стабильной даже при относительно высоких значениях масляного зазора.
В то же время вязкое масло увеличивает энергетические потери, производимые гидродинамическим трением.
Снижение вязкости моторного масла дает выигрыш механической энергии двигателя.
Этот эффект определяет тенденцию в двигателестроении по снижению вязкости моторного масла.
Однако в условиях повышенных нагрузок масло с низкой вязкостью не всегда формирует пленку толщиной, превышающей шероховатость поверхностей вкладыша и вала, что нарушает гидродинамический режим смазки, вызывая металлический контакт. Такой режим смазки приводит к повышенному износу вкладыша или даже схватыванию с валом. Материал вкладыша, работающего в таких условиях, должен иметь способность противостоять схватыванию и износу.
8. Дизельные двигатели
Дизельные двигатели характеризуются высокими значениями степени сжатия (17-22). Поэтому они имеют преимущество в к.п.д по сравнению с двигателями с зажиганием.
Благодаря высоким степеням сжатия давление в цилиндре дизельного двигателя очень высоко, достигает 200-230 бар.
Соответственно, циклическая нагрузка, действующая на вкладыши, особенно верхний шатунный, так же очень высока. Для работы в таких условиях вкладыши должны быть сделаны из специальных высокопрочных материалов.
9. Гибридные двигатели и двигатели старт-стопОпустим описание достоинств гибридных и старт-стоп двигателей, которые совершенно очевидны и не требуют разъяснений.
Перейдем сразу к недостаткам.
Основной из них это частая работа при низких скоростных оборотах. Такие условия реализуются при каждом выключении ДВС из-за переключения на электрический мотор или при остановке автомобиля.
В условиях низкой скорости вращения гидродинамическая сила недостаточна для противодействия внешней силе. Это приводит к нестабильной масляной пленке и металлическому контакту. Из-за частого отключения двигателя такой режим непосредственного трения происходит так же часто, приводя к повышенному износу вкладыша.
Сочетание высокой несущей способности с хорошими антифрикционными свойствами, требующееся для работы в таких условиях, может быть обеспечено специальными покрытиями, содержащими частицы твердой смазки.
10. Уменьшение размеров двигателейСовременные двигатели в сравнении с двигателями старой конструкции производят намного больше механической энергии, имея при этом существенно меньшие размеры. Коленчатые валы в этих двигателях так же много меньше. Поэтому и размеры современных вкладышей так же меньше.
Из-за этого нагрузка, генерируемая в цилиндре, действует на относительно небольшую площадь вкладыша. То есть удельная нагрузка (нагрузка на единицу площади) значительно возросла.
Небольшим по размерам, но мощным современным двигателям требуются вкладыши из материалов с высокой несущей способностью и пределом усталости. Кроме того, повышенная удельная нагрузка приводит к уменьшению толщины масляной пленки, разделяющей поверхности вала и вкладыша. В таких условиях становится все трудней предотвратить металлический контакт.
Другой проблемой современных компактных двигателей является недостаточная жесткость коленчатого вала и постелей вкладышей.
Вал изгибается под действием циклических нагрузок. Поверхности вала и вкладыша становятся не параллельными. Это вызывает локальное нарушение гидродинамического режима и износ.
Деформация постелей вкладышей, происходящая в условиях значительных нагрузок, искажает геометрию вкладыша, что так же может приводить к потере гидродинамического режима смазки.
Материал вкладышей, работающих в таких двигателях, должен обладать хорошей прирабатывающей способностью – способностью к аккомодации геометрических дефектов коленчатого вала и постели вкладыша.
11. Условия работы вкладышей в современных двигателях
Таким образом, влияние различных параметров и особенностей конструкции современных двигателей на работу вкладышей можно заключить в следующих условиях:
-
Высокие удельные нагрузки, величина которых может достигать 120 Мпа.
-
Очень низкие значения минимальной толщины масляной пленки (1 микрон и менее).
-
Смешанный режим трения с частым металлическим контактом.
-
Не параллельность трущихся поверхностей как результат эластической деформации коленчатого вала и постели вкладыша.
-
Повышенная скорость вращения.
-
Пониженная вязкость моторного масла.
12. Разработка современных вкладышей в King Engine Bearings Ltd.
King Engine Bearings Ltd. разрабатывает и производит вкладыши для ДВС с 1960 года. Весь технологический процесс производства, начиная от литья сплавов и заканчивая упаковкой готовых вкладышей, происходит на заводе в г. Кирьят Гат (Израиль).
Там же располагается подразделение компании, занимающееся исследованиями и разработками новых видов продукции и технологий.
Компания King Engine Bearings Ltd. осознаёт, что традиционные вкладыши не способны выдерживать тяжелые условия работы, характерные для современных двигателей.
Активность компании в исследованиях и разработках вкладышей для современных приложений осуществляется в трех основных направлениях:
-
Материалы с высокой усталостной прочностью и несущей способностью.
-
Покрытия для работы в условиях режима смазки смешанного типа.
-
Совершенствование конструкции вкладышей.
12.1 Разработка материалов с высокой несущей способностью
SV
Для высоконагруженных дизельных и некоторых бензиновых двигателей с турбо наддувом требуются вкладыши, сделанные из особо прочных материалов.
Как правило, в таких случаях используются вкладыши с покрытием, напыляемым в вакууме (Спаттер).
King Engine Bearings Ltd. так же обладает этой технологией и производит вкладыши Спаттер.
Однако наряду с технологией Спаттер, Кинг разработал альтернативную технологию SV. Вкладыши, произведенные по этой технологии, имеют серебряное покрытие, нанесенное на особо прочную висмутовую бронзу (рис. 1). Для повышения антифрикционных свойств вкладыша на серебряный слой наносится дополнительное покрытие из баббита или антифрикционного полимера.
Рис.1 Вкладыши SV
Вкладыши SV имеют ту же несущую способность 120 МПа, как и Спаттер.
Гоночная версия материала с серебряным покрытием носит название GP.
SM
SM — это биметаллический сталеалюминевый материал, разработанный Кингом для двигателей, имеющих повышенную нагрузку (рис. 2).
Рис. 2 Вкладыши SM
Алюминиевый сплав SM упрочнен специальными легирующими добавками, повышающими усталостную прочность материала.
pMax Black™ and pMax Kote™
В King Engine Bearings Ltd. разработан упрочненный триметаллический материал pMax Black™ [3].
Эта разработка включает инновационную технологию формирования ультратонкого прочного защитного «щита» на поверхности покрытия.
pMax Black™ обладает усталостной прочностью 70 МПа, что на 17% выше конвенциональных триметаллических вкладышей.
Вкладыши pMax Black™ легко узнаваемы по их характерному черному цвету (рис. 3).
В последнее время Кинг начал производство и продажу вкладышей из материала pMax Kote™ имеющих дополнительное антифрикционное покрытие.
Рис. 3 Вкладыши pMax Black™
Вкладыши, изготовленные из материалов pMax Black™ и pMax Kote™ завоевали прочные позиции на американском и европейском рынках изделий для гоночных автомобилей.
MC
МС – одна из последних разработок Кинга. МС это триметаллический материал, имеющий стальную основу, промежуточный слой из прочного алюминиевого сплава, покрытого износостойким антифрикционным полимерным покрытием.
Вкладыши МС прекрасно зарекомендовали себя в гибридных и старт-стоп двигателях. Полимерное покрытие обеспечивает стабильно низкое трение в условиях непосредственного контакта вкладыша с поверхностью вала, что часто случается в двигателях, оснащенных технологией старт-стоп.
Вкладыши МС так же успешно работают и в других двигателях, заменяя традиционные биметаллические и триметаллические материалы.
12.2 Разработка покрытий для работы в условиях смешанной смазки
Недостаток масла во время работы в режиме смешанной смазки может быть компенсирован твердой смазкой, распределенной в форме мелких частиц внутри полимерной матрицы. Этот материал наносится на поверхность вкладышей в форме покрытия.
Помимо твердой смазки полимерные покрытия, разработанные в Кинге, содержат упрочняющие фазы в форме частиц нано-размера. Подобно масляной пленке полимерное покрытие разделяет металлический материал вкладыша и поверхность вала.
Fig. 4 Вкладыши Кинга с полимерным покрытием
Три разных типа полимерных покрытий, предназначенных для различных приложений, разработаны в Кинге: К-340, К-334 и К-40.
K-340
К-340 это наиболее прочное покрытие, обладающее очень высокой износостойкостью, ударостойкостью и усталостной прочностью.
Покрытие может работать при нагрузках вплоть до 120 МПа.
K-334 для вкладышей pMax Kote™
К-334 это износостойкое покрытие, предназначенное для нанесения на относительно мягкую основу. К-334 был разработано для модификации материала pMax Black™. Модифицированный материал pMax Kote™ обладает повышенной износостойкостью в условиях металлического контакта, а также лучшей стойкостью к кавитационной эрозии.
K-40
К-40 это относительно мягкое покрытие. Оно обладает исключительной прирабатываемостью и другими антифрикционными свойствами. К-40 был разработан для двигателей, вкладыши которых испытывают постоянный металлический контакт, как, например, вкладыши в двигателях в гонках Драгстер.
12.3 Разработка элементов конструкции вкладышей
U-Groove™
При повышенных скоростях вращения двигателей абсолютные величины нагрузок, воздействующей на верхний и нижний коренные вкладыши, становятся близкими друг к другу. В этом случае удельная нагрузка, приложенная к верхнему вкладышу, имеющему масляную канавку, может превысить удельную нагрузку, приложенную к нижнему вкладышу.
Fig.5 Масляная канавка U-Groove™ с прямоугольным сечением
Конструкция канавки U-Groove™ с прямоугольным сечением позволяет увеличить эффективную площадь поверхности верхнего вкладыша. Это приводит к снижению удельной нагрузки на вкладыш.
ElliptiX™
В новой конструкции масляного отверстия его площадь сечения была увеличена за счет сочетания круглого отверстия с овальным, находящемся внутри масляной канавки.
Fig.6 Масляное отверстие ElliptiX™
Конструкция ElliptiX™ позволяет увеличить пропускную способность масляного отверстия без снижения эффективной рабочей площади вкладыша.
EccentriX™
Эксцентриситет вкладыша (разница между максимальной и минимальной толщинами) помогает установить стабильный режим гидродинамической смазки и сохранить форму масляного клина даже при деформации постели вкладыша [4].
Fig. 7 Оптимальный эксцентриситет вкладыша EccentriX™
Оптимизированная конструкция вкладыша EccentriX™ (рис. 7) обеспечивает стабильный гидродинамический режим его работы.
RadiaLock ™
Конструкция RadiaLock ™ обеспечивает оптимальную величину выступа стыка.
Fig. 8 Оптимальная конструкция выступа стыка RadiaLock ™
RadiaLock ™ обеспечивает надежный натяг и плотное прилегание вкладыша, в результате чего не происходит его проворачивания в постели, а тепло, образующееся при трении, уходит через вкладыш.
Выводы.Следующие тенденции в развитии конструкций двигателей бросают вызов разработчикам и производителям вкладышей:
-
Повышение объемной эффективности,
-
Принудительное нагнетание,
-
Увеличение степени сжатия и октанового числа,
-
Снижение соотношения ход поршня-к-диаметру,
-
Повышенная скорость вращения,
-
Низкая вязкость моторного масла,
-
Дизельные двигатели,
-
Гибридные и старт-стоп двигатели,
- Уменьшение размеров двигателей
Вкладыши современных двигателей должны выдерживать повышенные циклические нагрузки и быть способными работать в режиме смешанной смазки.
Представлены инновационные разработки King Engine Bearings Ltd., обеспечивающие надежную работу вкладышей в условиях современных двигателей внутреннего сгорания:
Материалы вкладышей
· SV
· GM
· SM
· pMax Black™
· pMax Kote™
· МС
Полимерные покрытия
· К-340
· К-334
· R-40
Детали конструкции вкладышей
· U-Groove™
· ElliptiX™
· EccentriX™
· RadiaLock ™
Источники:[1] Dmitri Kopeliovich, “Lubrication regimes” SubsTech (Substances & Technologies). Retrieved from www.substech. com/dokuwiki/doku.php?id=lubrication_regimes
[2] «Indianapolis 500 automobile race» Encyclopædia Britannica. Retrieved from https://www.britannica.com/sports/Indianapolis-500
[3] Dmitri Kopeliovich, “Bearing Materials for Race Engines” SubsTech (Substances & Technologies). Retrieved from http://www.substech.com/dokuwiki/doku.php?id=bearing_materials_for_race_engines
[4] Dmitri Kopeliovich, “EccentriX™ Optimal Eccentricity for High Performance Bearings” SubsTech (Substances & Technologies). Retrieved from
www.substech.com/dokuwiki/doku.php?id=eccentrix_optimal_eccentricity_for_high_performance_bearings
Др. Дмитрий Копелиович
Провернуло вкладыши двигателя: описание, причина, ремонт
Часто на многочисленных форумах, посвященных автомобильной тематике, можно прочитать темы о стуках в двигателе или о провернутых вкладышах. Это аварийная ситуация в ДВС. Когда говорят, что провернуло вкладыш, это значит, что подшипники скольжения на коленчатом валу и на шатунах вырвало из посадочного места и они пришли в негодность. Это серьезная поломка, которая случается достаточно часто. Автолюбители видят причину в низкокачественных моторных маслах от неизвестного производителя.
Но причин значительно больше, и они напрямую не связаны со смазкой и ее качеством. В доказательство этому есть множество примеров, когда коренные вкладыши выходят из строя, если в двигатель залито брендовое оригинальное масло. Или наоборот — подшипники работают не одну сотню тысяч километров на маслах среднего качества. Давайте разберемся, почему проворачивает вкладыши коленчатого вала, какие факторы на это влияют и что является главной причиной этого явления.
Разница между коренными и шатунными вкладышами
Необходимо знать, что есть два вида вкладышей. Это шатунные и коренные. Первые находятся между шатуном и шейкой коленвала. Коренной элемент похож на первый по своему предназначению. Однако он располагается там, где коленчатый вал проходит в корпусе двигателя. Вкладыши отличаются по своим размерам. Габариты зависят от типа ДВС, для которого конкретная деталь изготовлена. Существуют и специальные ремонтные вкладыши. Они отличаются от оригинальных новых, установленных в двигателе. Ремонтные вкладыши различаются лишь отметками, кратными 0,25 мм. Так, их размеры примерно такие — 0,25 мм, 0,5 мм, 0,75 мм, 1 мм.
Причины проворачивания вкладышей
Итак, коленчатый вал — это деталь, которая работает в жестких условиях, и ей приходится выдерживать колоссальные нагрузки в условиях экстремальных температур. Чтобы механизм надежно удерживался на оси и мог обеспечивать правильную работу всего кривошипно-шатунного механизма, необходимы вкладыши. Шейки на валу работают в качестве внутренней обоймы. Вкладыши — в качестве наружной.
В блоке ДВС имеются каналы для подачи смазки под давлением. За счет масляной пленки, которая обволакивает вкладыши, коленчатый вал может вращаться. Почему же автовладельцы сталкиваются с ситуациями, когда в двигателе провернуло вкладыши коленвала? Есть несколько возможных причин. Давайте рассмотрим их ниже.
Механический износ
Первая причина, по которой при ремонте двигателя проводят замену коренных и шатунных вкладышей, это выработка. Изнашиваются детали вследствие механических нагрузок. Многие пытаются сберечь вкладыши, однако это бесполезно. Здесь замешана физика, а физические процессы по-другому работать не могут. Износ неизбежен. Антифрикционный слой на вкладыше со временем стирается. Это ведет к свободному ходу коленвала. Появляются люфты. В результате этого снижается давление масла, причем вполне существенно. На большинстве двигателей, которые отличаются высокой надежностью, если провернуло вкладыш, это говорит об их износе.
Проворачивание шатунных вкладышей коленвала
Это тоже одна из популярных неисправностей. С такой проблемой столкнулось много автовладельцев. А вот о причинах знают далеко не все. Разберемся, что же случается с элементом. Пластина шатунных вкладышей достаточно тонкая.
Она устанавливается на специальное посадочное место. Наружные стенки на полукольцах имеют специальные выступы, которые еще в необкатанном и неразработанном двигателе упираются во фронтальную часть блока цилиндров. В определенный момент посадочное место просто не может удержать шатунный вкладыш. В результате типичная ситуация — провернуло вкладыш. Пластина не просто проворачивается, но и прилипает к шейке коленчатого вала. В этом случае мотор глохнет и больше не заведется.
Причины поломок шатунных вкладышей
Специалисты по ремонту двигателей внутреннего сгорания видят несколько причин, по которым подшипники скольжения проворачиваются. Зачастую это связано с излишне густым маслом, в которое попадают частички металла. Смазка со стружкой оказывает на вкладыши абразивное воздействие. Нередко случается и полное отсутствие масла. Особенно этим страдают автомобили с изношенными маслосъёмными кольцами. Часть смазки просто уходит «в трубу». В результате провернуло вкладыш и двигатель отправляется на ремонт. Могут быть недостаточно затянуты между собой крышки подшипников. И, наконец, еще одна причина. Это слишком жидкое масло. Особенно такие продукты вредны для моторов, работающих под высокими нагрузками.
Нарушение натяга
Если провернуло вкладыши, причины могут быть и в этом. В серийных автомобилях, собранных на заводе квалифицированными специалистами, такого не будет. А вот если мотор уже ремонтировали, то, скорее всего, подбор вкладышей был выполнен неверно и натяг нарушился.
Когда мотор работает, вкладыши испытывают повышенный момент трения. Этот момент стремится провернуть вкладыш. А из-за пониженного усилия, которое удерживает деталь на месте, риск проворачивания увеличивается в разы. Под действием неравномерной нагрузки, слабая посадка подшипника трения заставляет вкладыш вибрировать. Также нарушается смазочная пленка. В результате деталь проворачивается, а удерживающий порожек не в состоянии воспрепятствовать этому.
Как определить поломку
При проворачивании коренных вкладышей тут же выходит из строя коленчатый вал и блок цилиндров. В случае проворачивания шатунных подшипников, из строя выйдет сам шатун, колневал, а также блок цилиндров. В результате автовладельцу может помочь только капитальный ремонт мотора. Эту поломку можно определить. Существуют некоторые признаки провернутых вкладышей. Один из них — это характерный металлический стук по всему мотору.
Он не прекращается даже на холостых оборотах, а с повышением нагрузки он стучит еще интенсивнее. Еще один признак — низкое давление масла. Если двигатель холодный, тогда звуков может не быть. Если ситуация безвыходная, мотор заглохнет, и оживить его можно только ремонтом.
Ремонт и последствия
Типичная ситуация — провернуло вкладыши. Что делать? Решить проблему можно по-разному, в зависимости от характера повреждений. В некоторых случаях можно обойтись заменой вкладышей со шлифовкой коленвала. В сложных ситуациях ремонт будет значительно дороже.
Если провернулся шатунный вкладыш, то в современных двигателях это не является серьезной проблемой. Но это не касается коренного. Часто случается ситуация, что поврежденный вкладыш просто меняется, и мотор работает дальше. Специалисты не рекомендуют такой подход. Ресурс восстановленной таким образом пары шатун-шейка коленчатого вала может сильно сократиться. Гораздо более приемлемый вариант — это замена шатуна, с которым случилась проблема. Также если провернуло вкладыши (ВАЗ-2172 в том числе), обязательно ломается и замок на шатуне. Более оптимально будет расточить коленвал под следующий ремонтный размер и выполнить полную замену вкладышей и шатунов. Шлифовать вал после проворачивания необходимо в обязательном порядке.
На шейке механизма образовываются задиры. Только так можно добиться нужного состояния поверхности и двигатель будет работать правильно.
Что в итоге
Если в моторе что-то застучало, то это сигнал к немедленному прекращению эксплуатации автомобиля. Не стоит заводить мотор. Скорее всего, внутри двигателя провернутые вкладыши. Ремонт этой поломки может быть достаточно дорогим. Нужно учесть, что на ресурс элементов влияют и температурные режимы работы мотора. Не стоит перегревать двигатель. Что касается масла, то безопаснее всего использовать те продукты, которые полностью соответствуют требованиям и допускам производителя.
Вывод
Итак, мы выяснили, по каким причинам происходит проворачивание вкладышей коленчатого вала. Чтобы исключить поломку, не держите двигатель подолгу на высоких оборотах, вовремя меняйте масло, фильтры и соблюдайте температурные режимы работы мотора.
Коренные и шатунные вкладыши | Oil-club.ru
Как часто в разговорах и бывалых водителей и механиков, и новичков можно услышать фразу: «Движок стуканул!» или «Провернуло вкладыш». И все, или почти все, понимают, что разговор идет об аварии двигателя внутреннего сгорания, а именно, о выходе из строя подшипников скольжения коленчатого вала, будь то коренных, или шатунных. Эти аварии занимают одно из первых мест по частоте из всех серьезных происшествий с двигателем. Причем, чего греха таить, вину за происшедшее чаще всего возлагают на моторное масло. «Я, мол, залил масло такое-то, вот его качество и виновато!». А между тем, с одной стороны, имеется достаточное количество причин выхода из строя подшипников коленчатого вала, и далеко не все из них напрямую связаны с качеством моторного масла, а с другой стороны, имеется громадный опыт безаварийной эксплуатации таких же подшипников с не укладывающемся в нашем представлении пробегом в один, два и даже более миллионов километров.
Так какие же факторы могут стать причиной выхода подшипников из строя? Как по внешнему виду аварийного подшипника можно выявить эту причину? Как добиться того, чтобы за время эксплуатации автомобиля исключить хотя бы этот тип аварии двигателя? Вот с этими вопросами мы и попытаемся разобраться в этой статье.
Но для начала посмотрим, как устроен обычный подшипник коленчатого вала.
Рис. 1. Типичная конструкция коренного подшипника
На рисунке показан типичный состав слоев (от коленчатого вала по направлению к ложу подшипника) и их толщина:
- Защитный оловянный слой толщиной 1 микрон;
- Покровный слой — сплав медь (3%) – олово (8-12%) — свинец (до 100%), толщина 12-25 микрон;
- Никелевая прокладка (никелевый барьер), толщина 1-2 микрон;
- Вкладыш подшипника — сплав меди (69-75%), свинца (21-25%) и олова (3-4%), общей толщиной 250-400 микрон;
- Стальная основа толщиной 2-4 миллиметра и
- Защитный оловянный слой толщиной 0.5 микрон.
В некоторых случаях вкладыш подшипника изготавливают не из меди, свинца и олова, а из специального алюминиевого сплава.
Такая конструкция подшипника обеспечивает его следующие положительные характеристики:
Согласованность покровного слоя: мягкий гладкий материал этого слоя должен поддаваться (изнашиваться) для соответствия отклонениям размеров вала и незначительной несогласованностью с осью вращения, особенно при обкатке. Материал покровного слоя легко поддается без ущерба шейке вала.
Поглотительная емкость покровного слоя: мельчайшие частицы твердых веществ (грязи, продуктов износа и т.п.) могут поглощаться мягким материалом покровного слоя и покрываться мягкой пленкой, предотвращая вредные задиры, а, следовательно, износ шейки вала и самого подшипника.
Стойкость к заклиниванию: задир, истирание и рифление поверхности может вызываться твердофазной сваркой между скользящими поверхностями в случае, когда масляная пленка между подшипником и шейкой вала тонка или разорвана. Основной компонент покрытия, а именно, свинец является мягким металлом, который может работать в условиях граничной (плохой) смазки при запуске или останове двигателя. Исследователи подтвердили, что пленка с малым напряжением сдвига (т.е. покровный слой) на металле с высоким напряжением сдвига (т.е. на вкладыше) обеспечивает наименьшее трение. Опыт эксплуатации показывает, кроме того, что подшипники дизельных двигателей до 1996 года, не содержащие покровного слоя, часто заклинивали и проворачивались, особенно при запуске.
Коррозионная устойчивость покровного слоя: Она необходима для предотвращения коррозионного разъедания медно-свинцового вкладыша. Свинец легко поддается разрушению окисленным маслом или маслом с недостаточным общим щелочным числом (TBN), и значит, не способен бороться с кислотными продуктами сгорания топлива. Без покровного слоя, свинец вкладыша будет энергично растворяться, вызывая снижение его прочностной структуры. Для снижения разъедания покровного слоя, свинец в нем сплавлен с устойчивым к кислотам оловом, который, кроме того, упрочняет структуру покрытия.
Никелевый барьер: тонкий слой никеля между покровным слоем и вкладышем необходим для предотвращения миграции олова из покровного слоя в медно-свинцовый вкладыш при высоких рабочих температурах, а также со временем. Без никелевого барьера олово из покровного слоя будет проникать в материал вкладыша и образовывать нежелательные хрупкие сплавы с медью. При диффузии олова в медь наблюдаются два вредных эффекта. Уменьшение количества олова в сплаве покровного слоя уменьшение коррозионную устойчивость этого слоя. С другой стороны, хрупкие интерметаллические сплавы олова с медью могут вызывать проворачивание подшипника в случае, если до них достанет шейка вала. Чтобы избежать необходимости нанесения никелевого слоя, некоторые изготовители подшипников применяют свинцово-индиевый покровный слой.
Защитный слой: оловянное покрытие, которое защищает подшипник от атмосферной коррозии (ржавление стальной основы) и позволяет длительное хранение в обычных условиях.
Подшипники с алюминиево-кремниевым сплавом применяются реже медно-свинцовых. Они значительно сильнее подвергаются кавитации в высокоскоростных высоконагруженных двигателях. Технология их изготовления несколько сложнее, так как для того чтобы на алюминиевый сплав вкладыша нанести покровный слой приходится использовать специальную технологию для получения высококачественного сцепления.
Полевые испытания выпускаемых в США дизельных двигателей показали, что подшипники этих двигателей могут работать 1 миллион (1. 6 млн. км) и более миль без замены. Но чтобы достигнуть такого срока службы, требуется комбинация нескольких факторов:
- Качественные подшипники, которые правильно установлены.
- Коленчатый вал с правильными контурами шеек с соответствующим качеством обработки поверхности.
- Надлежащая практика технического обслуживания по срокам замены масляного и воздушного фильтров.
- Рекомендованные изготовителем двигателя интервалы замены масла.
- Предотвращение попадания в моторное масло охладителя и топлива.
- Использование масла соответствующих градаций вязкости SAE и стандарта качества API.
- Контроль эксплуатационных условий двигателя для исключения сильной перегрузки, чрезмерных оборотов, перегрева двигателя.
Эксперимент проводился в транспортных парках, имеющих грузовики Cummins, Detroit Diesel, Caterpillar и Mack. В результате этого испытания было упразднено ранее действующее правило «критерия обобщенного износа» в 300 000 миль (483 000 км), т. е. после такого пробега двигатель ставился на капитальный ремонт.
Испытуемые двигатели имели мощность 220-260 кВт (300-365 л.с.) с заменами масла в интервале от 15 000 до 32 000 миль (23 000 – 50 000 км). Однако подшипники одного из новых грузовиков Mack проработали 1 млн. миль при интервалах смены масла в двигателе через 50 000 миль (80 000 км). Более чем десятилетние полевые испытания показали, что при соответствующей эксплуатации наиболее нагруженные подшипники, а именно, шатунные, имеют безаварийный пробег от 1 до 1.5 млн. миль (до 2 400 000 км)!
Такие интервалы безаварийной работы моторных подшипников не в последнюю очередь зависят от улучшения в стандартах качества масел API. Внутри этой системы определены строгие проверочные испытания, в том числе и на коррозию подшипников. Это тесты:
- моторный бензиновый тест L-38 на износ подшипника
- стендовый тест Cummins на коррозию подшипника
- дизельный тест Mack T-9.
Тест L-38
Тест L-38 был разработан для оценки влияния смазочного материала на медно-свинцовый подшипник и стабильность масла к сдвигу. Все моторные масла, имеющие действующие спецификации API (CD, CF-2, CF-4, CG-4, SH, SJ) должны пройти тест L-38 на износ подшипника. Тест использует одноцилиндровый двигатель Labeco, который был разработан в 1950 году и до сих пор работает на этилированном бензине. Для теста используются медно-свинцовые подшипники без покровного слоя.
Цель теста – оценить коррозионную способность окисленного смазочного материала на подшипник. Окисленное масло содержит в своем составе органические кислоты, корродирующие свинец. Для этого температура масла в главной масляной магистрали двигателя L-38 поддерживается при 143°С во время всего 40-часового испытания. Двигатель гоняется при очень маленькой нагрузке при 3150 об/мин. Эти скорости и нагрузки гарантируют постоянный поток масла вдоль поверхностей подшипника. Если масло окисляется, то коррозия верхних и нижних подшипников произойдет однородно поперек вкладышей. Уровень воздействия определяется потерей веса подшипника до и после испытания.
В современных высококачественных маслах (т. е. API CF-4/CG-4/SH/SJ) окисление масла хорошо подавляется ингибиторами окисления, моющими и противозадирными присадками. Однако, в масле могут происходить сложные химические взаимодействия с образованием продуктов, способных корродировать медно-свинцовый сплав, или активная сера из пакета присадок будет разрушать вкладыш подшипника. В этом случае тест L-38 еще до поступления масла в продажу будет гарантировать, что его состав правильно сбалансирован по присадкам.
В 2001 году этот тест должны перевести на неэтилированный бензин для новой бензиновой спецификации API SL.
В 1985 году было установлено коррозионное разрушение бронзового пальца ролика толкателя клапанов. Это разрушение было обусловлено высокими уровнями дитиофосфата молибдена, добавляемого к маслу API CD/SF в качестве присадки для экономии топлива. Масла, использующие эту присадку, проходили тест L-38.
Такой бронзовый палец изготавливается из сплава, содержащего 95% меди и 5% олова и используется во многих дизельных двигателях и по сей день. Однако, дитиофосфат молибдена вызвал серьезный коррозионный износ пальца, образуя легко изнашиваемый сульфид меди.
Такое разрушение можно смоделировать в стендовых испытаниях и этот тест добавился при испытании масел API CG-4/CH-4. В тесте используются четыре металлических пластины из чистых свинца, меди и олова и фосфористой бронзы. Эти пластины погружаются в 100 мл масла, нагретого до 135°С с барботажем воздуха на 168 часов. По окончанию теста масло анализируется на содержание в нем вышеназванных металлов, а пластинка меди – на изменение цвета.
Тест Mack T-9
Хотя тесты L-38 и Cummins успешно применяются для исключения коррозии подшипников, они ничего не могут сказать о продленных интервалах смены масла, в результате которых общее щелочное число (TBN) масла может упасть ниже допустимого уровня и вызвать кислотное разрушение подшипников.
Тест Mack T-9 имеет продолжительность 500 часов. За это время, масла прошедшие тесты L-38 и Cummins, но имеющие недостаточное общее щелочное число вызовут износ колец и гильз и коррозию подшипников. Тест был введен в спецификацию CH-4 и из-за него TBN масел CH-4 возрос до 9-12.5.
Тест Mack T-9 показал, что он является точным инструментом для измерения коррозии медно-свинцовых подшипников с оловянно-свинцовым покрытием. Двигатель Mack 1994 года, рядный, 6-ти цилиндровый, 12-ти литровый развивает мощность 269 кВт (350 л.с.) при 1800 об/мин. Устанавливаются такие моторные условия, что первые 75 часов теста протекают при расчетной нагрузке, а остальные 425 часов при максимальном вращающем моменте (1250 об/мин) с 15% передозировкой топлива, что дает возможность получить 290 кВт мощности (390 л.с.). Максимальное давление сгорания в этих условиях 20.7 МПа. Понятно, что пиковый вращающий момент производит высокий износ колец и гильз, а также высокий износ подшипников. Температура масла в главной масляной магистрали 104°С, содержание серы в топливе 0.05 вес. %.
Высококачественные моторные масла, прошедшие эти тесты, в сочетании с высококачественными подшипниками и соответствующей практикой техобслуживания позволят эксплуатировать двигатели до пробега в 1 млн. миль
Однако за длительный период наблюдений набрались факты выхода моторных подшипников из строя. Далее приводится анализ причин, вызвавших эти аварии.
Утечка охлаждающей жидкости (антифриза)
Коррозия подшипников, обусловленная утечкой охлаждающей жидкости на основе гликолей (антифриз и т.п.) обычно совершенно очевидна. Корродируют все медно-свинцовые подшипники (шатунные, коренные и полуподшипники опоры вала), а также масляный радиатор.
Подшипники имеют яркий медный цвет. Здесь наблюдается полная потеря покровного слоя. На микрофотографиях сканирующей электронной микроскопии можно было увидеть значительную коррозию меди и свинца.
Рис. 2. Электронная микрофотография коррозии шатунного подшипника, вызванная утечкой гликолевой охлаждающей жидкости. Увеличение 150х.
Этиленгликоль, основа охлаждающих жидкостей, при попадании в моторное масло в столь суровых условиях (высокая температура и сильное насыщение воздухом) легко окисляется до щавелевой и муравьиной кислот. Это относительно сильные органические кислоты и легко реагируют с окислами меди и свинца. Химическое коррозионное разрушение органическими кислотами, как полагают, продолжает воздушное окисление меди и свинца. Образовавшиеся соли легко растворяются в потоке масла и уносятся с поверхности подшипника. В результате – яркая свежая поверхность металла, открытая для дальнейшего разъедания.
Миграция олова из покровного слоя
Подшипники были возвращены с полевых испытаний после проворачивания при относительно малом пробеге в 280 000 миль (450 000 км). Исследования показали, что два разных поставщика снабжали данные двигателя подшипниками, и подшипники одного из них выходили из строя чаще и в динамометрических, и в полевых испытаниях. Все они демонстрировали удаление покровного слоя.
Ни один из этих аварийных подшипников не имел никелевой прослойки между покровным слоем и вкладышем. При исследовании новых подшипников было установлено, что при их производстве олово из покровного слоя продиффундировало в сплав вкладыша и прореагировало с медью. Рентгеновский дифракционный анализ показал на границе раздела покровного слоя и вкладыша слой интерметаллического соединения толщиной 2 μm состава εCu3Sn. В этом случае покрытие содержало 7% олова. Другой же подшипник, содержащий в покровном слое 19% олова, образовал слой интерметаллида толщиной 1.2 μm.
Интерметаллическое соединение εCu3Sn является весьма твердым веществом с высокими фрикционными свойствами. И если в результате коррозии подшипник теряет покровный слой, то шейка коленчатого вала, войдя в контакт с твердым интерметаллидом, проворачивает подшипник и приводит к аварии двигателя. Решение проблемы – использование прослойки из никеля толщиной 1-2 микрона между покровным слоем и вкладышем в медно-свинцовых подшипниках. Никелевая прослойка выполняет функцию барьера, не позволяющему олову покровного слоя диффундировать во вкладыш со всеми вытекающими последствиями.
Потеря подшипником покровного слоя из-за незначительных утечек охлаждающей жидкости
Ранее мы рассмотрели коррозию подшипников из-за значительной утечки охлаждающей жидкости. Но оказывается, что и небольшие количества жидкости в моторном масле могут вызвать аварию подшипников.
Аварийные подшипники были лишены покровного слоя с частичным или полным обнажением металла вкладыша красного цвета. Исследование подшипников сканирующей электронной микроскопией показало наличие белых сферических частиц (шариков) со средними размерами от 15 до 40 микрон. Эти шарики не только поглощались покровным слоем, но и как бы пахали его. В результате, покровный слой был удален как бы абразивным износом, хотя и не в классическом смысле режущим действием шлифовальным зерном, но деформацией и вспахиванием мягкого материала такими шариками.
Было ясно, что сферические частицы были тверже покровного слоя, а по своему химическому составу (кальций, фосфор, сера и др.) они образовались из присадок моторного масла. Эти частицы назвали «масляными шариками».
Лабораторные исследования показали, что «масляные шарики» можно получить энергичным перемешиванием 2% гликоля с обычным моторным маслом в лабораторном стакане при 150°С в течение 2 часов.
Рис. 3. Электронная микрофотография «масляных шариков» вмурованных в покровный слой и вспаханный слой. Увеличение 1000х.
Механизм их образования следующий. Моторное масло в работающем двигателе энергично перемешивается вращающимся коленчатым валом и ударами шатунов. При наличии в масле небольшого количества охлаждающей жидкости или воды, они распределены в объеме масла в виде микроскопических капелек. Так как растворимость веществ присадок в воде значительно большая, чем в масле, в этих капельках сосредотачивается большая концентрация химических компонентов. При высокой температуре очень быстро протекают химические реакции между веществами присадок, приводящие, в конечном счете, к образованию весьма твердых по своей природе фосфорным соединениям кальция и цинка. И как только такая капелька «рассола» попадет на поверхность масла или на поверхность горячей детали, вода мгновенно испаряется и остается сферический комочек твердого вещества – «масляный шарик». Ну а дальше все просто. Попадая с потоком масла в зазор между шейкой коленчатого вала и подшипником, эти шарики начинают вести свою разрушительную работу – покровный слой подшипника по мере размеров «шариков» или поглощает их, если они меньше его толщины, или слой вспахивается, если «шарики» более крупные. Вспаханный слой обладает значительно худшей адгезией (прилипанием) к нижележащему вкладышу и начинает энергично смываться. Результат видели многие водители и механики – поверхность подшипника из серебристой становится сплошь красной или пятнистой. А в этом случае и до «стука» недалеко.
Однако, иногда наблюдается потеря покровного слоя на краях шатунных подшипников. Этот феномен не приводит, как правило, к аварии, но вызывает интерес механиков-мотористов. Это явление вызывается постелью шатунного подшипника, не являющейся совершенно ровной и прогибающейся по краям, где она менее жестка. Часто повышенная нагрузка на краю подшипника вызывается вогнутой поверхностью шейки вала, которая объясняется чрезмерной полировкой шейки в середине. Кроме того, масляная пленка на краю подшипника минимальна по толщине и несущей способности из-за срыва подъемной силы масляного клина на открытом участке.
Нарушение сцепления: отделение медно-свинцового сплава вкладыша от стальной основы
Достаточно редко, но наблюдается выход одного подшипника за другим в совершенно нормальных условиях эксплуатации. На таких подшипниках невооруженным глазом видны открытые свищи на поверхности вкладыша и рядом по направлению вращения коленчатого вала вчеканеные в покровный слой выколовшиеся фрагменты вкладыша. Другие же фрагменты, унесенные потоком масла, могут явиться причиной вторичных повреждений. Микроскопические исследования поперечного среза такого свища показывают наличие пустоты. Оплавленный вид стенки раковины (свища) дает основание предположить о производственном дефекте таких подшипников при литье.
Рис. 4. Расслоение. Показана дыра в медно свинцовом сплаве и соответствующий кусок из этой дыры. Увеличение 3х.
Кавитационные повреждения подшипниковКавитация, или правильнее, кавитационная эрозия, не вызывает аварии подшипника, но результатом ее является пятнистый вид поверхности подшипника. Обломки слоев подшипника, образовавшиеся в результате кавитационной эрозии, попадают между шейкой вала и покровным слоем и впечатываются в него.
Рис. 5. Прогрессирующая кавитационная эрозия алюминиевого шатунного подшипника вблизи поверхности разъема.
Кавитационная эрозия – результат действия микроструй высокого давления, образующихся в момент схлопывания пустот в объеме масла в зоне отрицательного давления. В масле в подшипниках отрицательные давления возникают в двух случаях – при вибрации и наличии быстро разбегающихся трущихся поверхностей, разделенных масляной пленкой. Разрыв непрерывной жидкой фазы в области пониженных давлений порождает образование пустот в виде пузырьков, которые с огромной скоростью схлопываются при попадании в область повышенных давлений. В этот момент образуется реактивная микроструя, несущая огромную (для размеров пузырька) энергию. Ее направление и удар могут быть направлены в любую сторону, но если струя попадает на поверхность мягкого покровного слоя подшипника, она как кумулятивный снаряд, разрывает ее. Микрооспины разрушений постепенно разрастаются, объединяются и вот они уже становятся заметны невооруженным глазом. В микротрещины между поврежденным покровным слоем и вкладышем проникает масло, ослабляя силы сцепления покрытия с вкладышем. Кроме того, тепловые перепады влияют на масло и металл, опять же раскачивая зоны сцепления двух слоев. Через некоторое время крупные куски покровного слоя отваливаются и уносятся потоком масла, вызывая затем вторичные разрушения, или вчеканиваются в еще целую поверхность покрытия, меняя ее прочностные и эксплуатационные характеристики. Подшипники выходят из строя.
По данным исследователей процесса кавитационной эрозии подшипников, она может происходить в результате:
- флуктуации (колебаниям) давлений в потоке масла из-за особенностей поверхности подшипника и шейки вала, таких как канавок и сверлений;
- инерционных эффектов масла внутри сверлений шатуна, используемых для подачи масла к шатунному пальцу и для охлаждения поршня;
- вибрации шейки вала в пределах зазора подшипника.
Зона скопления кавитационных повреждений в основном сосредоточена на верхнем шатунном подшипнике из-за упругой деформации верхнего бугеля при различных тактах двигателя, вызывающей образование пустот и их схлопывание в масляной пленке. Кроме того, не последнее место в образование пустот занимает и сверление шейки вала для подачи масла к подшипнику.
Хотя кавитационная эрозия наблюдалась и на медно-свинцовых подшипниках, более часто она проявляется на алюминиевых подшипниках из-за их более низкой усталостной прочности.
Абразивный износ покровного слоя
Это один из самых распространенных механизмов аварии подшипников. Однако этот тип аварий в настоящее время с успехом устраняется применением превосходных систем фильтрации моторного масла. Современные двигатели работают с 25-40 микронными полнопоточными фильтрами в комбинации с 10-15 микронными байбасными фильтрами. В некоторых случаях 25-40 микронные фильтры объединены с центрифужными фильтрами.
Однако, поломки подшипников, обусловленные грязью, происходят в очень мощных двигателях. С середины 90-х годов мощности транспортных грузовиков и внедорожных транспортных средств значительно возросла. Из-за увеличения нагрузок на подшипники, некоторые производители двигателей склоняются к «напыленным покрытиям» для увеличения их грузоподъемности. Эти гетерогенные алюминиево-оловянные покрытия имеют большую стойкость к износу и усталости, но меньшую поглотительную способность для грязи. Их безаварийная работа еще в большей степени зависит от чистоты двигателя и очистительной системы моторного масла.
Рис. 6. Поверхность шатунного подшипника. Показан абразивный износ вблизи масляного отверстия.
Начиная с 1991 года, растет уровень сажи в моторном масле. Это вызвано ограничениями по выбросам окислов азота в атмосферу с выхлопными газами. Для снижения уровня окислов азота в выхлопных газах необходимо снизить температуру сгорания топлива в цилиндрах дизельных двигателей. Для этого применяют более поздний впрыск топлива. Но в этом случае, вместе со снижением уровня окислов азота, происходит повышенное образование сажи, которая накапливается в моторном масле. Весьма актуальным становится вопрос борьбы с сажевым износом подшипников, и особенно подшипников и деталей кулачкового вала газораспределительного механизма верхнего расположения.
Разрыв масляного потока: авария одиночных подшипников
Во время эксперимента встречались случаи выхода одиночных подшипников из строя без видимых причин. Анализ аварийных подшипников показал наличие контакта «металл-металл» между подшипником и шейкой вала. Вид такого подшипника приведен на рис. 7.
Очевидно, несущая способность масляной пленки в какие то моменты оказывалась недостаточной. Такое может произойти из-за не соответствующей подачи масла, чрезмерной нагрузки, неточного попадания размеров в допуски, перегрев подшипника или какой-нибудь комбинации перечисленных факторов.
На ряде внедорожных транспортных средств, все такие аварии происходили во время резкого снижения нагрузки в процессе работы. Проворачивало только по одному подшипнику, в то время как остальные были в хорошем состоянии. Это значит, что количества масла, поступающего на аварийный подшипник, вдруг стало недостаточно. На минимальную величину масляной пленки могут влиять два основных фактора – вибрация мотора и разбаланс распределения нагрузки. При этом может произойти разрыв масляного потока. У подшипника, к которому на мгновение не поступает масло, резко подскакивает температура. Увеличение температуры производит двойной эффект: понижение вязкости масла и уменьшение зазора между подшипником и валом. С уменьшением вязкости масла происходит изтоньшение масляной пленки, а с уменьшением зазора уменьшается количество поступающего масла. Такой цепной процесс быстро приводит к заклиниванию и проворачиванию подшипника.
Рис. 7. Авария подшипника распределительного вала. Показан размазанный свинец вблизи центра подшипника, расплавленный свинец вокруг масляного отверстия и на краю подшипника.
Исследования показали, что температура подшипника начинает резко возрастать при достижении потока масла некоторого критического значения. Кроме того, температура подшипника была обратно пропорциональна потоку масла, и находится в прямой зависимости от удельной нагрузки и поверхностной скорости.
Как видно, причин выхода из строя подшипников скольжения коленчатого и распределительного валов достаточно много. Но сейчас уже имеется большой опыт работы таких подшипников при пробеге 1 миллион и более миль. Залог такого пробега кроется в качественном изготовлении деталей двигателя и правильной эксплуатации.
М. Н. Чистяков, техн. специалист фирмы «Май Тау»
Источник: J. A. Mc Geehan and P. R. Ryason «Million Mile Bearings: Lessons From Diesel Engine Bearing Failure Analysis»
http://www.autolub.info/
Описание основных причин износа коренных и шатунных вкладышей
Износ вкладышей приводит к снижению эффективности работы системы смазки двигателя, которое, в свою очередь, может привести к значительному износу отдельных частей силового агрегата, а также к снижению его рабочего ресурса. Поэтому при выявлении даже незначительного износа шатунных и/или коренных вкладышей необходимо предпринять меры по устранению неполадок.
Содержание
Обычно причинами износа является их естественное старение. Однако в некоторых случаях имеет место попадание на их рабочую поверхность грязи или мусора, возникновение коррозии, недостаточное смазывание, несоосность осей и другие причины. Как правило, вкладыши не подлежат восстановлению, поэтому их необходимо менять на новые. Процедура это достаточно сложная, поэтому самостоятельное ее выполнение имеет смысл лишь в случае, если у автовладельца есть соответствующий опыт выполнения работ и необходимые инструменты.
Описание работы вкладышей
Перед тем как перейти к описанию признаков, причин и методов по устранению износа вкладышей, необходимо разобраться в их предназначении, видах и принципе работы.
Существует два типа вкладышей коленчатого вала — коренные и шатунные. По сути, вкладыши являются подшипниками скольжения, и в их задачи входит выдерживание значительных нагрузок, возникающих между шатуном и шейкой коленчатого вала. В современных машинах (в большинстве случаев) вкладыши сделаны из пластичных алюминиевых сплавов (обычно с алюминий с оловом). Сверху они покрыты антифрикционным составом.
Коренные вкладыши расположены между коленчатым валом и местом, где коленвал проходит непосредственно через корпус двигателя, в посадочных местах, так называемых “постелях”. Коренные вкладыши имеют в своей конструкции отверстия, предназначенные для лучшего отвода масла. То есть, коренные вкладыши являются подшипниками скольжения для коренных шеек коленчатого вала. А по факту на коренных вкладышах держится и вращается коленвал.
Шатунные вкладыши располагаются в нижней части головки шатунов. А шатуны, в свою очередь, закрепляются с помощью шатунных вкладышей на шатунных шейках коленчатого вала. Функция шатунных вкладышей заключается в том, что они являются подшипниками скольжения для нижних головок шатунов и шатунных шеек коленчатого вала.
Износ вкладышей подразумевает значительное увеличение их зазоров (чем больше увеличение — тем хуже). Вследствие этого падает давление в системе смазки двигателя. Обычно в таких случаях на приборной панели загорается лампочка (масленка), символизирующая о том, что давление масла значительно упало. Особенно часто это проявляется на горячем двигателе, когда вязкость масла минимальна. Водители в таких случаях говорят, что “подшипники не держат масло”. Износ вкладышей — очень опасная проблема, которая может привести к большому износу других деталей двигателя и мотора в целом. А это может привести к значительному уменьшению их ресурса и повреждению.
Рекомендуется менять вкладыши при каждом капитальном ремонте двигателя.
Звук от стука коренных вкладышей обычно глухой, с металлическим оттенком. Его легко выявить, когда двигатель работает на холостых оборотах, и после этого обороты резко увеличиваются (резко надавить на педаль газа). При этом на них идет большая нагрузка и появляется стук. Аналогично нужно поступить и с шатунными вкладышами.
Несложно найти, и в каком именно цилиндре стучат вкладыши. Для этого нужно поочередно отключать (выкручивать) свечи зажигания на бензиновом двигателе или форсунки топлива на дизельном. Если при какой-либо выкрученной свече упомянутый стук пропал, значит, в этом цилиндре и существует проблема.
Признаки и причины износа
Теперь перейдем непосредственно к типам повреждений, которые способствуют износу вкладышей и выходу их из строя.
Попадание инородных тел
Признаки. Признаком попадание инородных тел или грязи является ситуация, когда возникает локальное повреждение рабочей поверхности на вкладыше. В некоторых случаях также возможно небольшое (меньшее) повреждение на обратной стороне детали. Как правило, мусор или грязь на поверхности вкладыша являются первопричиной дальнейшего износа. Поэтому нужно как можно раньше выявить указанную неисправность. В противном случае износ распространится дальше, и повреждена будет значительная площадь поверхности, вплоть до 100%.
Причины. Как указывалось выше, причиной такой ситуации является попадание грязи или мусора между вкладышем и его опорой. Из-за этого также возникает образование мест с большим масляным давлением, в которых разрушается масляная пленка. В свою очередь это приводит к разрушению поверхности вкладыша в процессе его эксплуатации.
Методы устранения. В первую очередь необходимо выполнить проверку поверхностей опоры вкладыша и вала на предмет выявления на них повреждений. Если они есть — их необходимо устранить. После этого нужно убедиться, что поверхности чистые. Особенно это касается случая, когда устанавливаются новые вкладыши.
Грязевая эрозия
Признаки. Признаком грязевой эрозии является наличие задир или вкраплений грязи. Иногда и то и другое. В особо запущенных случаях грязевая эрозия может переместиться на области около масляных отверстий.
Причины. Причиной в данном случае является некачественное масло, в составе которого есть грязевые примеси или абразивные материалы.
Устранение. Необходимо проверить работу всех движущихся деталей двигателя. Особенно тщательно нужно проверить систему смазки. Имеет смысл также проверить систему очистки масла и воздуха (в первую очередь фильтры). При сборке двигателя нужно не допускать попадания в него грязи. После всего нужно обязательно поменять масло на новое.
Коррозионное истирание
Признаки. Речь идет о наличии коррозионного истирания на задней стальной поверхности вкладыша. Как правило, следы коррозии располагаются ближе к соединению половинок корпуса вкладыша.
Причины. В данном случае причин может быть несколько. Среди них:
- Снижение усилия запрессовки. Это приводит к незначительным перемещениям корпуса вкладыша относительно поверхности их опоры.
- Крепежные болты были слабо затянуты при монтаже.
- На контактных поверхностях опоры вкладышей имеются инородные тела.
- Продолжительная работа двигателя на высоких оборотах (особенно если это проявляется часто).
- Использование вкладышей с неподходящими размерами (шириной).
Устранение. В соответствии с различными причинами возникновения неполадки методы устранения также могут быть разными. В частности:
- Затянуть крепежные болты с моментом, рекомендованным заводом-изготовителем автомобиля.
- Выполнить ревизию посадочного диаметра опоры вкладыша.
- Проверить чистоту соприкасающихся поверхностей между вкладышем и опорой.
- Использовать вкладыш предписанного размера (ширины).
- Старайтесь не использовать длительное время двигатель на высоких оборотах.
Усталость металла
Признаки. Усталость может быть вызвана не только длительной эксплуатацией вкладыша, но и чрезмерной нагрузкой на него. Признаками его выхода из строя будет ситуация, когда из его тела будут буквально вырваны частички материала, особенно в местах значительной нагрузки.
Причины. Их также может быть несколько:
- Использование неподходящих или некачественных вкладышей. Это приводит к их значительной перегрузке.
- Основная нагрузка при работе приходится на края вкладышей.
- Неполное сгорание топлива в камере сгорания.
- Неверный тюнинг двигателя автомобиля.
Методы устранения. Соответственно, методы устранения также могут быть различными. Нужно проверить:
- осевую форму шейки вала.
- форму и геометрические размеры опор вкладыша.
- условия сборки двигателя, и в частности, установки вкладышей.
Также имеет смысл установить новый качественный вкладыш, подходящий по размеру.
Износ из-за проникновения олова
Признаки. Значительный слой олова в определенном месте на поверхности стальной основы. Обычно это сопровождается очень сильным локальным износом в том месте.
Причины. Возникновение небольших перемещений вкладыша на его посадочном месте, возникших из-за малого усилия запрессовки.
Методы устранения. Как правило, необходимо выполнить следующие действия. Первое — проверить посадочный диаметр опоры вкладыша. Второе — проверить чистоту сопрягаемых поверхностей вкладыша и опоры. Третье — проверить момент затяжки болтов и его корректировка в соответствии с рекомендациями завода-изготовителя.
Коррозия поверхности
Признаки. При коррозии, в зависимости от ее степени, всегда повреждается поверхность вкладыша. Она становится пористой и теряет свой цвет.
Причина. Как правило, описанное явление вызвано использованием некачественного масла, в процессе разложения которого выделяются кислоты, которые и вызывают коррозию.
Методы устранения. Необходимо провести ревизию двигателя, а особенно систему смазки. При наличии значительных повреждений на валу и вкладыше необходимо их устранить. В конце ремонтных работ нужно обязательно поменять масло на качественное новое, рекомендованное для данной машины.
Недостаточно смазывание
Диагностика износа вкладышей
Признаки. Малое количество или отсутствие масла может привести к возникновению истирания и/или оплавления рабочей поверхности вкладыша. А это в свою очередь является причиной усталости металла и его повреждения.
Причины. Разрушение смазывающей пленки между вкладышем и валом. Из-за этого в процессе работы значительно возрастает трение и увеличивается температура. Материалы плавятся. Причиной также может быть сбой системы смазывания двигателя. В случае, если деформирована опора вкладыша или повреждена поверхность шейки вала, то высока вероятность разрушения смазывающей пленки.
Методы устранения. Необходимо провести ревизию системы смазывания двигателя, в том числе, чистоту масла. Также имеет смысл проверить состояние поверхности шейки вала и опор вкладышей. При необходимости нужно выполнить ремонт. Также возможен вариант установки новых вкладышей.
Неправильная обработка шеек коленвала
Признаки. Внутренняя поверхность вкладыша контактирует с шейкой вала с одной или двух сторон корпуса вкладыша. Также возможен вариант, когда материал внутренней поверхности очень изнашивается с торцов по окружности.
Причины. Причинами такой ситуации может быть:
- Размер вкладыша не соответствует необходимому значению, обычно большая ширина.
- Внутренний замок корпуса вкладыша маленький по размеру.
- Шейка вала установлена неправильно.
- Галтель (или галтели) шейки имеют очень большую ширину.
- Упорные подшипники имеют очень большие зазоры.
- Упорные подшипники неверно отрегулированы.
Методы устранения. Методы устранения также могут быть следующими, нужно проверить:
- тип корпуса вкладыша, его ширину, размер и форму замка.
- форму галтелей шейки вала.
- осевой зазор коленвала.
Царапины на поверхности
Признаки. Имеются отдельные царапины, которые по виду не напоминают рабочие потертости от работы механизма.
Причины. На рабочей поверхности вкладыша по каким-либо причинам (чаще всего из-за не соблюдения чистоты во время их установки) имеются мелкие инородные частицы. Возможно их образование вызвано технологиями литья или сверления.
Методы устранения. Выполнить промывание двигателя новым чистым маслом с помощью внешнего масляного насоса. Лучше промывку выполнять после сборки двигателя и до того, как автомобиль будет проходить обкатку.
Чрезмерная эрозия из-за кавитации
Признаки. Материал, из которого сделан вкладыш, имеет локальные точки вымывания. Обычно они расположены симметрично или центрально на рабочей поверхности вкладыша. Также возможно их возникновения на обратной стороне масляного канала.
Причины. Тут возможны несколько причин:
- попадание охлаждающей жидкости в масляную систему;
- увеличенная скорость потока масла в системе;
- детонация;
- неверные зазоры вкладыша.
Методы устранения. Методы устранения могут быть такими, необходимо проверить:
- наличие охлаждающей жидкости в системе смазывания двигателя;
- зазоры на вкладышах;
- скорость масляного потока;
- рабочие параметры системы зажигания, а также провести ревизию двигателя.
Несоосность
Признаки. При несоосности происходит чрезмерный износ лишь в районе верхней части корпуса вкладыша по направлению к кромке. При этом зоны изношенности находятся диаметрально противоположно на окружности.
Причины. Несоосность центральных осей вкладышей и шейки.
Методы устранения. Возможны следующие варианты:
- Проверить большой диаметр шатуна. При этом в идеале центральная ось «постели» шатуна должна располагаться точно перпендикулярно упорным плоскостям. При этом нужно проверить, чтобы обе упорные плоскости были параллельны.
- Для коренного вкладыша нужно проверить соосность «постелей» всех коренных вкладышей на двигателе.
Методы профилактики
Как указывалось выше, частичный выход вкладышей из строя влечет за собой повышенный износ двигателя, и в частности, системы его смазки. Поэтому чтобы не допускать подобной ситуации имеет смысл проводить периодические мероприятия по профилактике. Так, в первую очередь необходимо пользоваться тем моторным маслом, которое рекомендовано производителем автомобиля. Особенно это касается его вязкости. Не стоит покупать очень дешевое масло, поскольку высока вероятность, что в его составе будут абразивные частицы, которые негативно влияют на двигатель в целом, и на вкладыши в частности.
Также стоит производить периодическую проверку деталей двигателя, их состояние, геометрию, чистоту. При выполнении ремонтных работ нужно всегда следить за тем, чтобы в двигатель и/или систему смазки (масло) не попадала грязь. Существует так называемое “золотое правило” моториста, которое гласит, что лучше зазор на 0,03 мм больше, чем на 0,01 мм меньше. В таком случае вкладыш гарантировано не подведет, не расплавится и не застучит. Следите за состоянием двигателя вашего автомобиля, и он будет служить вам долгие годы.
Лучше не дожидаться ситуации, когда на приборной панели засветится лампочка, сигнализирующая о низком давлении масла. В идеале необходимо периодически проверять значение давления самостоятельно или в автосервисе. Ведь лампочка масленки светиться (то есть, срабатывает аварийный датчик) уже в крайнем случае, когда давление упало до критического. Этого лучше не допускать, особенно на двигателях со значительным пробегом.
Заключение
Необходимо периодически проверять состояние вкладышей, поскольку эти, казалось бы, незначительные детали могут привести к большим проблемам с масляной системой двигателя, тем самым значительно снизив его ресурс. И чем раньше удастся выявить поломку и устранить ее — тем с меньшими затратами в будущем придется столкнуться автовладельцу для проведения ремонта двигателя. Процедуру по замене можно провести как самостоятельно, так и на СТО. Однако, если вы решите выполнить ремонт самостоятельно, то вы должны быть на 100% уверены в том, что сможете довести дело до конца, поскольку замена подразумевает большой объем как демонтажных, так и монтажных работ.
Спрашивайте в комментариях. Ответим обязательно!
испытания на износ» на сайте компании Механика по ремонту автомобилей
Жизненный путь вкладышей подшипников коленчатых валов двигателя внутреннего сгорания может быть очень тернистым. Как правило, к их подбору подходят удручающе рутинно, а ремонтники относятся к ним как к расходному материалу. Чаще всего на вкладыши обращают внимание в связи с их конструкцией, зазорами в подшипниках и теорией подачи масла. Но как только двигатель обкатан и запущен в работу, внимание сразу переключается на другие проблемы…
Сегодня порассуждаем о том, насколько конструкция вкладыша, его покрытие и масло, которые выбираются, могут иметь драматичные последствия для его жизни.
Инженеры компании King Bearings во главе с доктором Дмитрием Копелиовичем, ведущим специалистом по конструкции и технологии вкладышей подшипников двигателя, недавно разработали новый вид шатунных и коренных вкладышей, получивших название pMaxBlack. Новинка создана из инновационных материалов с тем, чтобы вкладыш оставался всё еще достаточно «мягким» для работы в двигателе с высокой удельной мощностью, но одновременно обеспечивал повышенные усталостную прочность и несущую способность. Каких-либо подробностей о своей новой разработке King, естественно, не сообщает, но очевидно, что найден способ сделать вкладыш прочнее, чтобы он выдерживал повышенное давление в форсированном двигателе, но при этом оставался достаточно «мягким» – для должного выполнения своих функций.
Немного теории
Триметаллические вкладыши, предназначенные для гоночных или форсированных двигателей, изначально сделаны «мягкими», так как если под большой нагрузкой шейка вала деформируется, или гнется сам коленвал, шейка может коснуться поверхности вкладыша. Если вкладыш достаточно «мягкий», то он просто слегка изнашивается со временем. К сожалению, при холодных запусках двигателя этот износ вкладышей становится критичным, так как шейка вала делает несколько оборотов «насухую» прежде чем между вкладышем и шейкой образуется надежный несущий масляный клин. Поэтому можно часто видеть, как гоночные команды заполняют систему смазки двигателя маслом под давлением непосредственно перед холодным пуском.
В новом вкладыше pMaxBlack производства King твердость верхнего слоя вкладыша увеличена на 24%, при увеличении усталостной прочности на 17%! А покрытие pMaxKote делает такие вкладыши еще более износостойкими.
Материал вкладыша King на основе алюминиевого сплава (вкладыши с индексом HP) применяется в двигателях с очень высокой нагрузкой. По словам Рона Следжа из King Bearings: «… продолжительность нагрузки определяет, какой вкладыш надо использовать – HP, XP или XPC. Вкладыш типа HP выдерживает очень высокую нагрузку, но сравнительно недолго (например, в гонках дрегстеров – на максимальное ускорение), в то время как вкладыши типа XP или XPC гораздо лучше ведут себя в длительных кольцевых или внедорожных гонках».
Преимущество вкладыша типа HP состоит в том, что он лучше выдерживает работу при наличии загрязнений или отклонений коленвала, чем вкладыши XP или XPC, из-за большей толщины алюминиевого антифрикционного слоя – 0,30 мм. Меж тем толщина баббитового верхнего слоя на вкладыше типа XP/ХРС составляет всего лишь 0,013 мм. Столь тонкий слой легко повреждается различными загрязнениями, а также «кривыми» шейками коленвала.
Твердость вкладыша
Вид материала вкладыша |
Показатели твердости |
Алюминий |
40 HV |
Триметалл |
11…14 HV |
pMaxBlack |
18 HV |
pMaxKote |
~40 HV |
Идти в ногу с технологией
Двигатели современных дорожных автомобилей сейчас часто имеют бо́льшую литровую мощность Nл, чем чисто гоночные моторы всего два десятилетия назад. А механики-ремонтники, естественно, ожидают, чтобы вкладыши, поставляемые в запчасти, соответствовали степени форсировки подобных двигателей. Именно для этого King Bearings разработал вкладыши типа pMax Black.
Забегая вперед, можно сказать: King разработал и особое покрытие для такого вкладыша, названное pMaxKote. Этой маркировкой компания обозначает «нанокомпозитное полимерное покрытие». По словам Следжа, термин «нанокомпозитный» означает лишь то, что покрытие выполнено из наноматериалов на полимерной основе. Новое покрытие, толщиной всего 0,005 мм, наносится прямо на поверхность верхнего слоя pMaxBlack, причем толщина вкладыша остается неизменной, поскольку King пропорционально уменьшил толщину промежуточной медной подложки. Неизменная толщина вкладышей позволяет сохранять те же монтажные/масляные зазоры в подшипниках коленвала, что и прежде. Покрытие pMaxBlack защищает вкладыш от небольшой перегрузки и обеспечивает износостойкость – даже когда происходит непосредственный контакт вкладыша с шейкой коленвала.
Вот что происходит, когда шатунный вкладыш недолго работает при максимальной нагрузке и с недостатком смазки. Шатунные вкладыши выходят из строя чаще коренных, так как они сильнее нагружены и масло к ним подается в последнюю очередь.
Проверить испытаниями
На словах всё кажется прекрасным, однако, как новое покрытие будет функционировать в реальной жизни?
И King решил проверить свои разработки в сотрудничестве с компаниями Driven Racing Oils и Shaver Specialties, использовав V-образный восьмицилиндровый двигатель Chevrolet, рабочим объемом 6,3 л и относительно небольшой мощностью – 440 л.с., установив его на динамометрический стенд. Программа испытаний была составлена таким образом, чтобы создать явную перегрузку шатунных и коренных вкладышей. Для получения необходимых исходных данных в двигатель поочередно устанавливали комплекты вкладышей King типа XP и триметаллических. Для испытаний мотор заправляли моторными маслами на минеральной и синтетической основе, но с одинаковой вязкостью – 5W-20, производства Driven Racing Oils.
Это пример листа отчета, сформированного компанией SPEEDiagnostix. Любые отклонения от допусков немедленно выделяются желтым или красным цветом. Если все в порядке, символы отмечаются зеленым цветом.
Столь низкая вязкость масла была выбрана сознательно, с тем, чтобы изначально уменьшить толщину масляной пленки в подшипниках и увеличить возможность непосредственного контакта и износа вкладышей.
Чтобы получить максимально точные результаты, специалисты Driven Racing Oils промывали систему смазки после каждого из четырех испытательных циклов. Промывка включала слив «рабочего» масла, замену масляного фильтра Wix и заправку «обкаточным» маслом (BR30, производства Driven), после чего двигатель работал в течение 30 минут, в том числе дважды включалась полная мощность. Затем промывочное масло сливалось, фильтр менялся, и двигатель заправлялся свежим маслом. Та же самая процедура повторялась и при смене вкладышей.
На этом фото справа – шатунный вкладыш XP без покрытия после работы под нагрузкой более трех часов, с использованием масла 5w20, без присадок. Такая же проверка была проведена для вкладышей XP pMaxBlack – на фото слева. Снижение износа очевидно.
В сопроводительной диаграмме также перечислены присадки, которые добавлялись в базовое масло. Цинк и фосфор (ZDDP) – противоизносные присадки. Молибден и бор – присадки, снижающие трение, а кальций – моющая присадка.
Первый цикл испытаний проводился со вкладышами типа XP и с минеральным маслом. Затем первый комплект вкладышей XP был сменен вторым аналогичным комплектом. На этот раз двигатель заправили синтетическим маслом 5w20. Третий цикл испытаний включал в себя установку нового комплекта шатунных и коренных вкладышей pMaxKote и заправку двигателя традиционным минеральным маслом 5w20. Четвертая, и последняя проба была выполнена с другим комплектом вкладышей pMaxKote, но на этот раз с синтетическим маслом.
Это пять нижних коренных XP-вкладышей без покрытия после тестовой работы на обычном минеральном масле. Налицо значительный износ.
Критерием оценки каждого испытания было сравнение степени износа деталей двигателя по содержанию различных металлов (в ppm – «частиц на миллион») в моторном масле, слитом после каждого испытания. Спектрометрический анализ выполняла компания SPEEDiagnostix.
Лучший способ испытания вкладышей для их максимального нагружения заключался в том, чтобы заставить работать вышеназванный двигатель Chevy на низких оборотах, но при высокой нагрузке. Динамометрический стенд SuperFlow периодически «тормозил» работающую на полную мощность, шестилитровую «восьмерку» Chevy до 1450 об/мин, а затем вновь позволял ей разогнаться до максимальных оборотов. И так 14 раз на протяжении трех часов и пятнадцати минут, в каждом из четырех циклов испытаний. При этом тщательно отслеживались температуры масла и воды.
Такие испытания лучше всего подходят для проверки долговечности вкладышей. В приложенных таблицах мы показываем результаты. Наиболее важными элементами, показывающими износ, являются железо, медь, свинец, олово и алюминий. Как стандартные, так и триметаллические вкладыши King сделаны главным образом из меди, олова и свинца, поэтому их содержание в слитом масле указывает на износ самого вкладыша. Алюминий попадает в масло в основном с поршней, а железо – со стенок цилиндров.
И хотя измеренное количество (ppm) примесей относительно невелико, различия между каждым циклом испытаний выглядят убедительно. Начнем с объяснения каждой категории в листе результатов. Тип масла – минеральное или синтетическое. Тип вкладыша означает, есть ли на вкладышах покрытие или нет. Индекс вязкости масла указывает, насколько вязкость масла меняется в широком диапазоне температур. Чем выше число, тем меньше «разжижается» масло с ростом температуры.
Эти испытания потребовали многократного демонтажа двигателя для замены всех вкладышей, но результаты стоили того. Для экономии времени моторист заменял коренные вкладыши, не вынимая коленвала. Он ослаблял все крышки коренных подшипников и осторожно устанавливал новые вкладыши, проворачивая вал и выталкивая старый вкладыш.
Обратите также внимание, что мы указали в таблице каждый элемент присадок в масло, что показывает идентичность пакета присадок как для минерального, так и для синтетического масел. Это значит, что любое уменьшение продуктов износа (при сравнении масел) должно быть связано с качеством базового масла, а не с присадками.
Таким образом, результаты показывают, что сочетание вкладыша pMaxKote производства King Bearings и синтетического масла является прекрасным способом радикально уменьшить износ деталей в двигателе. Как можно видеть, общая величина износа в 35 ppm (полученная сложением показателей износа каждого отдельного элемента), при использовании обычного вкладыша и «минералки», была уменьшена на 74% при использовании высококачественного синтетического масла и вкладышей pMaxKote.
Простая установка вкладышей с покрытием, при использовании минерального масла, также дало значительное улучшение, сократив общий показатель износа с 36 до 21 ppm, что равносильно увеличению износостойкости на 40%. Это стоит учитывать при сравнении соотношения расходов и долговечности, так как вкладыши King с покрытием дороже обычных.
В таблице результатов видно несколько большее, чем ожидалось при применении синтетического масла, содержание свинца в третьем цикле испытаний (с вкладышами без покрытия и синтетическим маслом). Свинец – основной металл в верхнем слое триметаллического вкладыша (свинцовистый баббит), поэтому, возможно, его износ и был несколько выше, чем с «минералкой». Несмотря на то, что испытания всеми силами делались как можно более стантартизованными, остается масса возможностей, за счет которых могло возникнуть это повышенное число. Но суммарный показатель количества продуктов износа все же был ниже, чем у вкладышей без покрытия с минеральным маслом.
Двигатель Chevy, объемом 6,3 л., пережил множество этапов испытаний, но до сих пор уверенно работает.
Результаты испытаний
Статья подготовлена по материалам с сайта www.enginelabs.com
ХОТИТЕ СТАТЬ АВТОРОМ?
Пришлите свою статью
Вкладыши коленвала: неисправности и подбор новых деталей
Одним из важнейших элементов привычного нам ДВС является коленвал. За счет него энергию от сгорания топлива можно передать смежным элементам и обеспечить вращение колес. Ключевой момент здесь: вал вращается. На первый взгляд ничего особенного, но любой инженер подтвердит, что работа с вращающимися элементами требует особого подхода. Ведь необходимо обеспечить вращение для вибраций, а также нагрева, обусловленного действием сил трения. В этом очень помогают вкладыши коленвала, представляющие собой полукольца с т.н. антифрикционным покрытием. На первый взгляд, очень простая вещь, однако грамотному автолюбителя нужно знать об этих элементах коленвала все. Об устройстве вкладышей, их неисправностях, а также методике замены вы узнаете из материала Avto.pro.
Подробнее о детали
Вкладыши по своей сути – это подшипники скольжения, в которых нуждаются шатуны, вращающие коленвал, и отдельные части самого вала. Вращение обеспечивает сгорающая в цилиндрах двигателя смесь воздуха и топлива. Разумеется, двигатель работает при больших нагрузках и стремится как можно сильнее раскрутить коленчатый вал. Проблема возможного трения деталей здесь стоит особенно остро, причем возникновение т.н. сухого (безмасляного) трения может вывести двигатель из строя очень быстро. Решение простое: обеспечить постоянное наличие тонкой масляной пленки. Выходит, что вкладыши коленчатых валов представляют собой лишь своеобразную защиту, которая поддерживает масляную пленку в местах трения. В идеале из строя по адекватным причинам вкладыши должны выходить. Сразу отметим, что вкладыши коленвала бывают следующие:
- Коренные. Такие вкладыши располагают между самим валом и теми местами, в которых он проходит через корпус двигателя;
- Шатунные. Их устанавливают между шатунами и шейками автомобильного коленвала.
Как уже было указано выше, вкладыши коленвала не похожи на классические роликовые или шариковые подшипники – они выглядят как обычные полукольца. Дело в том, что обычные подшипники не выдержат нагрузок, которые выдает силовой агрегат автомобиля. Лишь в некоторых маломощных моторах установлены подшипники качения, тем временем как наиболее распространенными являются именно подшипники скольжения. Резюмируя, назначение вкладышей коленчатого вала в следующем:
- Обеспечить нормальную передачу сил и моментов, которые возникают при работе силового агрегата;
- Минимизация сил трения, которые возникают в местах контакта коленвала, опор блока цилиндров, а также шатунов;
- Центровка деталей, правильное позиционирование;
- Распределение масла.
Здесь стоит отметить, что со временем геометрия вкладышей меняется. Сильно изношенные детали необходимо менять, но в качестве замены не всегда подходят оригинальные вкладыши, установленные еще на заводе автоконцерна. Рекомендуется установка вкладышей ремонтных размеров, толщина которых больше. Если на старый двигатель установить не ремонтные вкладыши, зазор между деталями будет слишком большим, что может вылиться к появлению стуков и интенсивному износу коленчатого вала.
Как устроены вкладыши коленвала
Конструкция современных подшипников скольжения коленчатого вала составная. Она включает в себя пару металлических полуколец, которые охватывают шейку коленчатого вала и снизу, и сверху. Сами полукольца при этом плоские – иначе бы не удалось создать достаточно небольшой зазор между вкладышем и валом. Кроме того, во вкладышах предусмотрены такие элементы:
- Одно или два отверстия, через которые масло может двигаться к масляному каналу;
- Продольная канавка, если это коренной вкладыш (нижний) или же верхний шатунный;
- Боковые стенки, если вкладыш упорный;
- Фиксирующий замок, выполненный в виде пазов под штифтовое крепление или в виде шипов.
Сами вкладыши при этом бывают биметаллические или же триметаллические. Самыми простыми и распространенными являются именно биметаллические вкладыши, основой которых является полосы 0,9 – 4,0 миллиметра толщиной из стали и с антифрикционным покрытием, толщина которого составляет 0,25 – 0,40 миллиметра. Как правило, такое покрытие выполнено из мягкого сплава меди, свинца и олова. Реже встречается сплав из меди, алюминия и олова, а также свинца, алюминия, олова и кремния. Как правило, медь и алюминий составляют 75% сплава.
Менее распространенные триметаллические вкладыши коленвала имеют специальный покровный слой очень малой толщины. Он призван защитить вкладыш от коррозии и быстрого износа. Состав сплава почти аналогичен составу для антифрикционного слоя, вот только в нем содержится очень много свинца и довольно мало меди. Кроме того, самые продвинутые и дорогостоящие вкладыши могут иметь дополнительные защитные слои – один с внутренней, а второй с наружной стороны. В составе защитных слоев может встречаться олово и никель. Сразу отметим, что подшипники скольжения имеют иногда имеют весьма занятные исполнения, так как автоконцерны могут создавать вкладыши по-своему, не руководствуясь единым стандартом.
Причины и признаки неисправности
Вкладыши могут выходить из строя по ряду причин. Разумеется, эксплуатационный ресурс вкладышей очень большой, так что автолюбители не так часто сталкиваются с необходимостью их замены. Но если поломка все же случилась, действовать нужно незамедлительно. Рекомендуется сразу обратиться на СТО, где двигатель сможет осмотреть специалист. Однако продлить эксплуатационный ресурс вкладышей автолюбитель может. Вот по каким причинам данные детали могут выходить из строя:
- Попадание инородных тел;
- Усталость металла;
- Износ вследствие проникновения олова;
- Коррозия поверхности;
- Грязевая эрозия;
- Недостаточное смазывание;
- Эрозия из-за кавитации;
- Несоостность.
Как видите, причин выхода из строя довольно много. Давайте рассматривать их по порядку. Касательно первой причины: если на рабочую поверхность вкладыша попадают инородные тела или же грязь, дальнейший износ вкладыша происходит ускоренно. Строго рекомендована очистка системы и замена подшипников, если они имеют критический износ. Касательно второй: усталость может быть вызвана как длительной эксплуатацией, так и чрезмерной нагрузкой на деталь. Стоит опасаться как установки низкокачественных вкладышей, так и недогорания топлива в камерах и неправильного тюнинга мотора. Кроме того, имеет смысл проверить форму шейки вала. Касательно третьей: если вкладыш перемещается на своем посадочном месте, в местах, где слой олова значителен, он может изнашиваться намного сильнее. Здесь рекомендован осмотр, очистные работы и корректировка. Касательно четвертой причины: ускоренный износ детали и появление на ней следов коррозии зачастую связано с применением низкокачественного моторного масла. При этом особняком стоит выход вкладышей из строя вследствие грязевой эрозии (пятый пункт списка). На вид все просто: из-за скопления грязи на вкладышах, а в иных случаях и в области вокруг масляных отверстий, детали изнашиваются быстрее. На деле же причин, по которым в системе появляется так много грязи, несколько. Рекомендована замена масла, а также масляных и воздушных фильтров.
Одной из самых частых причин, по которой любые вкладыши приходится менять чаще обычного, кроется в невысоком качестве смазывания (шестой пункт списка). Вследствие возникновения сухого трения вкладыши могут изнашиваться очень сильно. Рекомендуется проверить систему смазывания агрегата, а также убедиться в опор вкладышей и общей целостности вала. Касательно седьмой причины: проверьте, нет ли в моторном масле примесей антифриза от утечки. Также имеет смысл убедиться в правильности зазоров вкладышей. В иных случаях эрозия из-за кавитация может быть вызвана частой детонацией топлива и слишком большой скоростью тока моторного масла в системе. Сам вкладыш при этом будет иметь хорошо заметные точки вымывания. И, наконец, что касается восьмой причины: если вкладыш сильно изнашивается ближе к кромке, нужно проверить правильность расположения осей вкладышей и шейки.
Выявить поломку вкладыша зачастую удается лишь в самый последний момент. Именно по этой причине производители автомобилей рекомендуют периодически проводить диагностику двигателя, менять вкладыши, опционально производить шлифовку шеек коленчатого вала. Если вы слышите глухой металлический стук в районе двигателя, критически высока вероятность того, что его источником является вал с изношенными вкладышами. Как показала практика, стук шатунных вкладышей имеет высокую резкость и очень хорошо прослушивается, если вы удерживаете холостые обороты и затем резко подгазовываете.
Немного о подборе вкладышей
Самостоятельный подбор вкладышей – довольно рисковое дело, так как вероятность выбрать деталь, которая не вполне подходит к коленвалу вашего автомобиля, будет сложно. Дело в том, что потенциальному покупателю важно учитывать не только совместимость запчасти с автомобилем, но еще и состояние некоторых его узлов. В данном случае речь идет об коленчатом вале, который еще и придется отшлифовать. Так что без обращения к эксперту, который разберет двигатель и проведет диагностику, зачастую не обойтись. Вполне вероятно, что придется устанавливать ремонтные вкладыши большой толщины. Такие детали можно искать по следующим параметрам:
- Данные автомобиля;
- VIN-код;
- Код подходящего вкладыша.
Проще всего вести поиски в каталогах интернет-магазинов. Там автолюбитель сможет, к примеру, найти оригинальные вкладыши и, отталкиваясь от них, подобрать ремонтные. Если старые вкладыши просто износились по причине длительной эксплуатации и значительных нагрузок, есть вероятность того, что дефектовка коленчатого вала не потребуется. Из этого следует, что подходящие вкладыши будет подобрать несколько проще.
Если вы хотите выполнить как можно более значительный объем работ самостоятельно, то для начала вам придется определить показатель зазора. Для этого нужен динамометрический ключ и специальная калибровочная проволока. Если зазор большой, это говорит о необходимости расточки вала и дальнейшей установки ремонтных вкладышей. Работу с валом можно доверить исключительно профессионалам. Размер подходящих вкладышей можно определить микрометром. В технических руководствах тоже можно найти полезную для поиска вкладышей информацию.
Вывод
Вкладыши коленчатого вала – простые и, на первый взгляд, невероятно живучие элементы современных двигателей. Практика успела показать, что с необходимостью замены вкладышей за весь период пользования автомобилем приходится сталкиваться один-два раза. Но не стоит думать, что это именно та деталь, которая не должна ломаться. Напротив, вкладыши иногда называют защитными элементами коленчатого вала, так как они одними из первых принимают на себя удар. Если вы столкнулись с необходимостью замены вкладышей, ни в коем случае не медлите. Обратитесь к специалисту по двигателям и доверьте все ему, или же попытайтесь сделать часть работы самостоятельно.
Влияние рабочей температуры гильзы цилиндра на потери на трение и выбросы двигателя в соединении поршневых колец
Основные
- •
Температура гильзы цилиндра влияет на потери на трение.
- •
Оптимальная температура футеровки повышает энергоэффективность и снижает выбросы.
- •
На температуру гильзы практически не влияет вязкий сдвиг смазки.
- •
Это означает, что оптимальные условия не зависят от частоты вращения двигателя.
Реферат
Несмотря на обширные исследования альтернативных методов, двигатель внутреннего сгорания, как ожидается, останется основным источником движения для транспортных средств в обозримом будущем. По-прежнему существуют значительные возможности для повышения эффективности использования топлива, что позволяет напрямую снизить вредные выбросы. Следовательно, снижение тепловых потерь и потерь на трение постепенно становится приоритетной задачей. Система поршень-цилиндр составляет основную долю всех потерь, а также выбросов.Следовательно, потребность в комплексном подходе, особенно прогнозного характера, является существенной. В данной статье рассматривается этот вопрос, в частности роль температуры гильзы цилиндра, которая влияет как на тепловые, так и на фрикционные характеристики системы поршень-цилиндр. Основное внимание в исследовании уделяется верхнему компрессионному кольцу, критическая функция уплотнения которого делает его основным источником потери мощности на трение и важным компонентом защиты от дальнейшего проникновения вредных газов. О таком комплексном подходе до сих пор не сообщалось в литературе.Исследование показывает, что температура гильзы цилиндра имеет решающее значение для снижения потерь мощности, а также для снижения выбросов углеводородов (HC) и оксида азота (NOx) из соединения компрессионного кольца и гильзы цилиндра. Результаты предполагают наличие оптимального диапазона рабочих температур гильзы, независимо от частоты вращения двигателя (по крайней мере, в изученных случаях) для минимизации потерь на трение. В сочетании с изучением выбросов NOx и HC контроль температуры футеровки может помочь снизить потери мощности на трение и уменьшить выбросы.
Ключевые слова
Двигатель внутреннего сгорания (ВС)
Гильза цилиндра
Поршневое кольцо
Трение
Среднее эффективное давление трения (FMEP)
Потери энергии
Расход топлива
Рекомендуемые статьи
© 2017 Автор (ы). Опубликовано Elsevier Ltd.
Рекомендуемые статьи
Цитирующие статьи
Гильзы цилиндров — нанесенные наноповерхности
Отверстия блока цилиндров в двигателях внутреннего сгорания, особенно в двигателях с алюминиевыми блоками, обычно не выдерживают длительного скользящего контакта с движущимся поршнем, и поэтому должны быть усилены вставкой в виде гильзы цилиндра, сделанной из более прочного материала. Большинство гильз цилиндров сегодня изготовлено из чугуна. Внутренняя поверхность гильзы имеет особый рисунок хонингования, помогающий минимизировать трение и износ, предотвратить заклинивание поршня и снизить расход масла и утечку газа. Наиболее сильный износ кольца происходит около верхней мертвой точки гильзы, когда внутренние напряжения максимальны, а скорость поршня близка к нулю, что создает условия для разрушения масляной пленки.
Трибокондиционирование гильз цилиндров позволяет значительно снизить трение вблизи точек поворота в системе поршень / канал, и в то же время улучшает уплотнение и снижает риск заклинивания поршня.Гильзы цилиндров с трибокондиционированием имеют более плоские выступы, что приводит к оптимальному распределению контактного давления между отверстием и поршневыми кольцами, а также имеет лучшее удерживание масла по сравнению с гильзами обычного типа.
Трибокондиционирование гильз цилиндров выполняется с использованием стандартных хонинговальных станков с набором инструментов для трибокондиционирования, установленных на хонинговальной головке вместо хонинговальных брусков, и технологической жидкости, специально созданной для переноса соответствующих химических прекурсоров. В настоящее время ANS работает в тесном сотрудничестве с ведущими мировыми производителями хонинговального оборудования для внедрения трибокондиционирования в массовое производство.
Влияния triboconditioning на профиле шероховатости поверхности и несущей площадь кривых гильз цилиндров
(после Б. Жмуди, трибологии и смазка Technology 2011, pp.42-49).
Влияние трибокондиционирования на трение кольцевых прокладок (по Б. Жмуда, Э. Томаник, Ф.-А. Ксавье, Третья международная конференция по трибологии, Лулео, Швеция, 19-21 марта 2013 г.).
Снижение износа поршневых колец за счет трибокондиционирования внутреннего диаметра цилиндра (по Б.Жмуд, Компонент транспортного средства 5, 2012, стр.18-21).
Моделирование влияния пор гильзы на смазку поршневых колец в двигателях внутреннего сгорания
Аннотация
Производители автомобилей все чаще заменяют традиционные чугунные гильзы в двигателях внутреннего сгорания коммерческих автомобилей гильзами с напылением. Предполагается, что эти новые пористые футеровки уменьшают гидродинамическое трение, хотя и не предполагалось изначально. В данной работе исследуется взаимодействие пор со смазкой поршневого кольца и гильзы.Предварительное численное моделирование гидродинамики выполняется для одной идеализированной геометрии поры, включая поверхностное натяжение, но без кавитации из-за ограничений вычислительных затрат. Возможные механизмы вытеснения масла из поры исследуются, так как это улучшит последующую смазку колец. Обнаружено, что поток, управляемый давлением, доминирует в этом процессе, хотя поверхностное натяжение также оказывает влияние: оно может захватывать пузырьки воздуха в поре и выравнивать скопившуюся нефть обратно в вакуумированную пору.Существует детерминированная модель для прогнозирования гидродинамического давления и трения для шероховатых и отточенных поверхностей гильзы. Однако эта модель предполагает полностью затопленные граничные условия. Модификация основного уравнения для областей за пределами полных границ пленки разработана путем введения диффузионного профиля скорости. Диффузия обеспечивает переход от масляной пленки на гильзе, испытывающей однородный поток, к полному пленочному течению Куэтта. Это изменение позволяет приспособить большую геометрию пор к модели без нереалистичного преждевременного прикрепления пленки, сохраняя при этом непрерывный переход от полной пленки к кавитации.Результаты модели показывают, что пора может действовать как источник масла, расширяя область смачивания под кольцом и, следовательно, обеспечивая большее создание давления и большую желаемую несущую способность. Кавитация также играет важную роль во взаимодействии пор; ранняя кавитация в порах может привести к разделению всей области пленки, что значительно снизит нагрузочную способность. Также обнаружено, что кавитация потенциально использует запас масла в порах для перераспределения масла на футеровке.В общем, пора вызывает значительное падение подъемной силы, в результате чего увеличивается коэффициент трения, хотя в некоторых случаях расширенная область смачивания может противодействовать этому эффекту.Описание
Диссертация: S.M., Массачусетский технологический институт, факультет машиностроения, 2019 Каталогизируется из версии диссертации в формате PDF. Включает библиографические ссылки (страницы 71-72).Отдел
Массачусетский Институт Технологий.Кафедра машиностроенияИздатель
Массачусетский технологический институт
Методика расчета методом конечных элементов для анализа усталости гильз цилиндров высокоэффективного двигателя внутреннего сгорания
[1] С.Сисса, М. Джакопини и Р. Рози, Оценка срока службы выхлопного коллектора дизельного двигателя при малоцикловой термической усталости и многоцикловой вибрационной усталости. 74, с.105–112, (2014).
DOI: 10.1016 / j.proeng.2014.06.233
[2] С.Фонтанези и М. Джакопини, Многофазная CFD-CHT оптимизация рубашки охлаждения и FEM-анализ головки двигателя дизельного двигателя V6, Прил. Therm. Англ., Т. 52, нет. 2, стр.293–303, (2013).
DOI: 10.1016 / j.applthermaleng.2012.12.005
[3] М. Лоренцини, М. Джакопини и С. Г. Барбьери, Термомеханический анализ выпускного коллектора высокоэффективного двигателя с турбонаддувом, Key Eng. Матер., Т. 774, с.307–312, август (2018).
DOI: 10.4028 / www.scientific.net / kem.774.307
[4] С.Дж. Барбьери, М. Джакопини, В. Мангеруга и С. Мантовани, Конструкция стального поршня, изготовленного с использованием добавок, для высокопроизводительного двигателя: разработка численной методологии, основанной на методах оптимизации топологии, в технических документах SAE, 2018, том . 2018-апрель.
DOI: 10.4271 / 2018-01-1385
[5] Л.Н. Мастрандреа, М. Джакопини, Э. Бертоки, А. Строцци и Д. Дини, Полное трехмерное описание упругого поведения поршневого кольца и его влияния на трибологическое поведение поверхности раздела поршневое кольцо-гильза цилиндра ,, Soc. Трибол. Lubr. Англ. Анну. Встретить. Выставлен. 2016, с.121–124, (2016).
[6] С. Андерберг, З. Димковский, Б.-Г. Розен, Т. Р. Томас, Поверхности гильз цилиндров с низким коэффициентом трения и эмиссии и влияние топографии поверхности и окалины // Трибол. Int., Т. 133, нет. Январь 2018 г., стр.224–229, май (2019).
DOI: 10.1016 / j.triboint.2018.11.022
[7] В.Дунаевский, Анализ перекосов цилиндров и совместимости поршневых колец, Трибол. Пер., Т. 33, нет. 1, с.33–40, (1990).
DOI: 10. 1080 / 104020081927
[8] ЧАС.Саиди Гугарчин, С. М. Х. Шарифи, Ф. Форузеш, Г. Х. Р. Хоссейнпур, С. М. Этесами и С. Малек Заде, Сравнительное исследование критериев усталости для прогнозирования отказа конструкции двигателя, англ. Провал. Анал., Т. 79, нет. Март, с.714–725, сентябрь (2017).
DOI: 10.1016 / j.engfailanal.2017.05.016
[9] ЧАС. Кагеяма, С. Хара, Ю. Кавабата, Исследование моделирования контакта юбки поршня, т. 15. С. 15–19, (1994).
[10] А.Фельтри, Термоструктурный анализ взаимодействия поршня и гильзы с использованием метода конечных элементов для высокоэффективного двигателя, кандидатская диссертация, Университет Модены и Реджо-Эмилия, (2016).
[11] К. Данг Ван, Ж. Кайло, Дж. Флавено, А. Ле Дуарон и Х. П. Лиерад, Критерий разрушения вследствие многоцикловой усталости при многоосной нагрузке, двухосной и многоосной усталости. с.459–478, (1989).
IRJET — Запрошенная вами страница не найдена на нашем сайте
IRJET приглашает статьи по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 2 (февраль-2021)
Отправить сейчас
IRJET Vol-8, выпуск 2, Февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г. )
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г. )
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г. )
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
IRJET приглашает участников из различных инженерных и технологических дисциплин и научных дисциплин для Тома 8, выпуск 2 (февраль-2021 г. )
Отправить сейчас
IRJET Vol-8, выпуск 2, февраль 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.
(PDF) Повышение круглости деформированной гильзы цилиндра в двигателях внутреннего сгорания за счет использования некруглого профиля гильзы
2. ExxonMobil. Прогноз развития энергетики на 2017 год: взгляд до 2040 г. Содержание.Exxon Mobil
Corporation. 2017.
3. Пирс Д., Хейнс А., Хьюз Дж., Грейвс Р., Мазиас П., Муралидхаран Г. и др. Высокотемпературные материалы
для тяжелых дизельных двигателей: исторические и будущие тенденции. Prog
Mater Sci. 2019; 103: 109–79.
4. Knauder C, Allmaier H, Sander DE, Sams T. Исследования потерь на трение
различных концепций двигателей. Часть 1: Комбинированный подход к применению узла —
Решенный анализ потерь на трение в современном дизельном двигателе легковых автомобилей.
Смазочные материалы. 2019; 7 (5): 39.
5. Гу Ц., Мэн Х, Се Й, Чжан Д. Влияние текстурирования поверхности на переход
режимов смазки между поршневым кольцом и гильзой цилиндра. Int J Engine Res.
2017; 18 (8): 785–96.
6. Ли Т, Ма Х, Лу Х, Ван Ц., Цзяо Б., Сю Х и др. Анализ смазки поршневого кольца
двухтактного судового дизеля с учетом подачи масла. Int J Engine Res.
2019; (145): 146808741987211.
7. Styles G, Rahmani R, Rahnejat H, Fitzsimons B. Внутрицикловое трение и трение за весь срок службы
Кратковременность соединения поршневое кольцо-гильза в смешанном режиме смазки. Int J
Двигатель Res. 2014; 15 (7): 862–76.
8. Дельпрете С., Разавикия А. Динамика поршней, смазка и трибологические характеристики
оценка: обзор — Кристиана Дельпрете, Аббас Разавикия, J Engine Res. 2018;
Опубликовано в Интернете: https://journals.sagepub.com/doi/abs/10.1177/1468087418787610
9. Кох Ф., Деккер П., Гюльпен Р., Квадфлиг Ф.-Дж., Лепрехт М. Гильза цилиндра
Анализ деформации — измерения и расчеты. Журналы двигателей SAE.
1998; 107 (3): 838-847.
10. Лу И, Лю Ц., Чжан И, Ван Дж, Яо К., Ду И и др. Оценка трибологических характеристик системы кольцо / гильза
при деактивации цилиндра с учетом деформации гильзы цилиндра
и подачи масла. PLoS One.2018; 13 (9): 1–27.
11. Гангули А., Агарвал В.К., Сантра Т. Прогнозирование и уменьшение деформации гильзы цилиндра
для двухколесного одноцилиндрового бензинового двигателя. Двигатели SAE Int J.
2015; 8 (4): 1913–23.
Измерения интенсивности кавитации для двигателей внутреннего сгорания по JSTOR
Журнальная статья
Измерение интенсивности кавитации для двигателей внутреннего сгоранияДиаа М. Хосни, Деннис Тиббетс и Роджер Луенс
Сделки SAE
Издатель: SAE International
https://www.jstor.org/stable/44736365
КопироватьПоследние тенденции в конструкции двигателя, направленные на увеличение мощности, снижение веса, опережение момента впрыска и увеличение скорости впрыска и давления, могут привести к увеличению случаев питтинга гильзы.Точечная коррозия гильзы из-за кавитации охлаждающей жидкости является сложной функцией многих конструктивных параметров двигателя и условий эксплуатации, как описано в ссылке [1] *. Традиционно проблемы кавитации футеровки не выявлялись на ранних этапах цикла разработки. Тогда для решения проблем кавитации потребовались традиционные измерения вибрации гильзы и давления охлаждающей жидкости в сочетании с большим количеством дорогостоящих ресурсных испытаний двигателя. Метод, недавно разработанный автором и описанный в ссылке [2] для измерения интенсивности кавитации, был успешно использован для определения рабочего состояния двигателя и построения предельных кривых.Этот метод также можно применять ненавязчиво. Метод учитывает как макроскопические, так и микроскопические аспекты процесса кавитации в рубашке охлаждающей жидкости, прилегающей к гильзе. Макроскопические эффекты включают колебания гильзы и падение давления охлаждающей жидкости для возникновения кавитации. Микроскопические эффекты включают динамические аспекты пузырьков, которые в конечном итоге приводят к образованию интенсивных микроструй, вызывающих повреждение. С помощью этого метода было разработано понимание условий работы двигателя, типа охлаждающей жидкости, давления, температуры и расхода в зависимости от степени кавитации.Этот метод может заменить дорогостоящие и трудоемкие испытания на выносливость. Метод помог ускорить фундаментальное понимание сложной природы кавитации охлаждающей жидкости в двигателях внутреннего сгорания.
SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов.Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.
× Закрыть оверлейЗакрыть просмотр
.