Какая должна быть компрессия на Приоре в норме
Автомобиль: Лада Приора.
Спрашивает: Черепашка нинзя.
Суть вопроса: при какой минимальной компрессии двигатель работает ещё хорошо?
Здравствуйте. Такое ощущение что двигатель перестал тянуть. Из выхлопной дыма практически нет. Если есть, то после дождя в основном — ПАР. Померили компрессию — 11.6, 14, 12, 14. Мастер сказал что первый цилиндр не особо хороший, но тяга должна быть.
Это нормальная компрессия для Приоровского 16-ти клапанного двигателя?
Заводская компрессия на Лада Приора
Новые двигатели после обкатки могут показывать 16. Это вполне нормально.
Считается, что если компрессия меньше 13 на Приоровском двигателе — то это к скорым проблемам. Двигатель на Приоре очень тяговитый, если компрессия меньше 12, то тяга уже не будет прежней.
Проверка компрессии
Даже у машин с солидным пробегом этот параметр не должен снижаться меньше 12 атмосфер. В вашем случае есть проблема с первым цилиндром, причин может быть много. Я бы на вашем месте лез в двигатель с капиталкой только после того, как появится серьёзный масложор или тяга пропадёт совсем.
Приступаем!
Для проверки компрессии на Приоре требуются следующие инструменты:
- свечная головка;
- компрессометр;
- удлинитель;
- вороток;
- головка на 10 мм.
Чтобы замерить компрессию на 16-ти клапанном двигателе:
- Прогреваем двигатель, чтобы он достиг рабочих температур.
Рабочая температура.
- Для снятия пластмассового кожуха необходимо потянуть его на себя.
- Выкручиваем 4 свечи зажигания. Для этого используем ключ на 16.
Можно осмотреть с фонариком состояние свечных колодцев.
- Отсоединяем питание от катушек. Для этого отключаем колодку жгута проводов.
- Убедитесь в том, что значение на компрессометре сброшено на ноль. Далее устанавливаем измерительный прибор в отверстие первого цилиндра.
- Теперь нужно сесть за руль и выжать педаль газа до упора. Затем заводим движок и крутим стартер до тех пор, пока не перестанет повышаться давление.
Капиталка близко. Но ездить можно!
- Выключаем зажигание. Оцениваем уровень компрессии.
Простой тест прокладки
При недостаточной компрессии необходимо залить немного масла в цилиндр. Затем проводим проверку повторно. При увеличении параметров, проблему следует искать в поршневых кольцах. Если же в результате добавления ничего не изменится, то прокладку головки блока придётся сменить.
Мы бы рекомендовали проверить компрессию первого цилиндра именно таким способом.
Зрим в корень: сказки про компрессию двигателя
Залегшие кольца или трещина в клапане — значительно более частые причины снижения компрессии, чем износ двигателя.2
Компрессия — это вульгаризм. Правильно — давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива — для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт. По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?Компрессия и степень сжатия — одно и то же: сказка первая
Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров. «Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.
1 no copyright
Поднял компрессию — увеличил мощность: сказка вторая
Не совсем так. Компрессию можно поднять двумя способами — увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд. Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором — на 9%. Здорово! А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, — на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2–3%, причем в зоне малых и средних оборотов. А на высоких — никакого эффекта… Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, — стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше. Способ второй — уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два. Сделали. Для нового мотора — всё нормально, для всех цилиндров компрессия 13,2…13,4 бар. Для испорченного кольцами с большими зазорами — 10,8…11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку. Компрессия резко выросла, а мощность — нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.
2 no copyright
Нет компрессии — сразу на капиталку: сказка третья
Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно? Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это — тема отдельной статьи.
Чем выше компрессия, тем лучше: сказка четвертая
Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить. Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот. Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.
3 no copyright
И совсем не сказка…
Так на что же влияет компрессия? На многое! Главное — на пусковые свойства мотора, особенно при низких температурах. В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально — попадает туда в виде негорючих жидких капель. Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается. Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю. Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой — наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» — дело в целом бесперспективное.
Компрессия в цилиндрах Лада Приора (ВАЗ 2170, 2171, 2172)
Компрессия в цилиндрах Лада Приора (ВАЗ 2170, 2171, 2172)Компрессия (давление в конце такта сжатия) в цилиндрах — важнейший показатель для диагностики состояния двигателя без разборки. По ее среднему значению и по разнице значений в отдельных цилиндрах можно с достаточной степенью точности определить степень общего износа деталей шатунно-поршневой группы двигателя, выявить неисправности этой группы и деталей клапанного механизма. |
Проверяют компрессию специальным прибором — компрессометром, который сейчас можно свободно приобрести в крупных магазинах автозапчастей. |
|
|
1. Пустите двигатель и прогрейте его до рабочей температуры. |
2. Снизьте давление в системе питания (смотрите «Понижение давления в топливной системе»). После снижения давления предохранитель топливного насоса на место не устанавливайте, чтобы отключить топливный насос. |
3. Снимите катушки зажигания и выверните все свечи (смотрите «Замена свечей»). |
4. Вверните компрессометр в свечное отверстие проверяемого цилиндра. |
5. Нажмите на педаль акселератора до упора, чтобы полностью открыть дроссельную заслонку. |
6. Включите стартер и проворачивайте им коленчатый вал двигателя до тех пор, пока давление в цилиндре не перестанет увеличиваться. Это соответствует примерно четырем тактам сжатия. |
|
7. Записав показания компрессометра, установите его стрелку на ноль, нажав на клапан выпуска воздуха. |
8. Повторите операции 4–7 для остальных цилиндров. Давление должно быть не ниже 1,0 МПа и не должно отличаться в разных цилиндрах более чем на 0,1 МПа. Пониженная компрессия в отдельных цилиндрах может возникнуть в результате неплотной посадки клапанов в седлах, повреждения прокладки головки блока цилиндров, поломки или пригорания поршневых колец. Пониженная компрессия во всех цилиндрах указывает на износ поршневых колец. |
9. Для выяснения причин недостаточной компрессии залейте в цилиндр с пониженной компрессией около 20 см3 чистого моторного масла и вновь измерьте компрессию. Если показания компрессометра повысились, наиболее вероятна неисправность поршневых колец. Если же значение компрессии осталось неизменным, значит, тарелки клапанов неплотно прилегают к седлам или повреждена прокладка головки блока цилиндров. |
|
Руководство по ремонту ВАЗ 2170, 2171, 2172
Как проверить компрессию на приоре 16 клапанов – АвтоТоп
Компрессия( давление в конце такта сжатия) в цилиндрах двигателя Lada Priora — дает возможность для диагностики состояния двигателя без разборки и качественной оценки возможной неисправности в автомобиле. По среднему значению компрессии в цилиндрах и по разнице значений в отдельных цилиндрах можно с достаточной степенью точности определить степень общего износа деталей шатунно-поршневой группы двигателя Lada Priora, выявить неисправности данной группы и деталей клапанного механизма.
Проверяют компрессию в цилиндрах двигателя автомобиля Lada Priora специальным прибором — компрессометром, который сейчас можно свободно приобрести в крупных магазинах автозапчастей и не только. По-другому компрессометр называют просто манометром.
Бывают другие компрессометры, у которых взамен резьбового штуцера для вворачивания вместо свечи зажигания установлен резиновый наконечник. Такие компрессометры при проверке компрессии просто сильно прижимают к свечному отверстию. В таких случаях измерения давления в цилиндра происходит легко и просто.
Заметьте, что условиями правильности показаний при проверке компрессии цилиндров являются исправность стартера и его электрических цепей, а также полная заряженность аккумуляторной батареи( и стравливание воздуха в самом компрессорометре).
И так начинаем замер давления в цилиндрах двигателя Lada Priora:
Повторите данную процедуру для остальных цилиндров двигателя. Давление должно быть не ниже 1,0МПа и не должно отличаться в разных цилиндрах более чем на 0,1МПа. Пониженная компрессия в отдельных цилиндрах может возникнуть в результате неплотной посадки клапанов в седлах, повреждения прокладки головки блока цилиндров, поломки или пригорания поршневых колец. Пониженная компрессия во всех цилиндрах указывает на износ поршневых колец.
Для выяснения причин недостаточной компрессии залейте в цилиндр двигателя с пониженной компрессией около 20 грамма чистого моторного масла и вновь измерьте компрессию. Если показания компрессометра повысились, наиболее вероятна неисправность поршневых колец. Если же значение компрессии осталось неизменным, значит, тарелки клапанов неплотно прилегают к седлам или повреждена прокладка головки блока цилиндров.
Причину недостаточной компрессии можно выяснить также подачей сжатого воздуха в цилиндр, в котором поршень предварительно установлен в ВМТ( верхняя мертвая точка поршня в цилиндре) такта сжатия. Для этого снимите с компрессометра наконечник и присоедините к нему шланг компрессора. Вставьте наконечник в свечное отверстие и подайте в цилиндр воздух под давлением 0,2–0,3МПа. Для того чтобы коленчатый вал двигателя не провернулся, включите высшую передачу и затормозите автомобиль стояночным тормозом приора. Выход( утечка) воздуха через дроссельный узел свидетельствует о негерметичности впускного клапана, а через глушитель — о негерметичности выпускного клапана. При повреждении прокладки головки блока цилиндров воздух будет выходить через горловину расширительного бачка в виде пузырей или в соседний цилиндр, что обнаруживается по характерному шипящему звуку.
Как видите, проверка компрессии цилиндра двигателя сразу отсекает много версий некоторой неисправности двигателя лада приора, но иногда является последней возможностью для точной диагностики двигателя автомобиля.
Доброго времени суток, господа. Вопрос заключается в замере компрессии приорыша 16клаппанного, а точнее…
Ведется замер без всех свечей, без подачи топлива…с выжатой педалью газа и крутилось…кручу стартером до «победного» (качки прекращаются автоматически — стартер отключается, вроде бы 12 качков):
1 цил — 12
2 цил — 12.2
3 цил — 12
4 цил — 12.5
Вроде бы неплохо
Но если накачав (до «победного») эти 12 очков и потом вновь продолжить крутить стартером то накачается до 16 очков и хоть закачайся расти не будет.
Дак как правильно? И какая компрессия 12 или 16 ?
не помню где-то читал что вообще раз 10 надо качнуть всего…а у меня на 10 разах всего 8 набегает очков
Приора какая должна быть компрессия
Правила (изменены 14. 04. 2013): 1) Уважайте мнение других, так как уважаете свое! 2) Не создавайте однотипных тем, т.
К. Среди кучи таких тем сложно найти что-то полезное! (вторичные темы будут удаляться! ) 3) Не флудите, пытайтесь отвечать на поставленные вопросы ясно и по теме. 4) Мат запрещен! Вплоть до исключения пользователя из сообщества.
5) Коммерческая деятельность разрешается с согласия администрации. А теперь внимание: 6) Если хотим что то продать, пишем сюда: 7) Хотим что то купить на приорку, то просим сюда: 8) Ксенон Резину и диски АвтоЗвук Подвеску 9) Форум здесь пишем что вы сделали с приоркой, пишите то о чм хотите просветить народ, похвастаться! =) (например: купил новые лампочки, занизил машину, покрасил катафоты, почистил пепельницу и т. Д.
) В названии указать что именно было сделано. Желательно вставлять текст с небольшим описанием и ссылку на бортовой журнал. Записи со ссылками на бортовой журнал без основного текста будут удаляться! 10) Блог здесь спрашиваем вопросы возникшие во время эсплуатации приоры или если хотим получить совет что и как делать! (например: как занизить приору, как поменять лампочку в бардочке, как сделать шумку и так далее), а может просто решили поделится результатом того как решили какую то серьзную проблему. Если какая то проблема появилась, желательно описать е и добавить видео или фото. Записи с ссылкой на бортовой журнал, будут удаляться! Так же будут удаляться записи с советами по внешнему виду, вс таки блог для срочных и важных вопросов.
Компрессия на приоре
При предыдущем замере (1000км назад) на холодном моторе намерил 18бар в каждом цилиндре. При полностью …
Замер компрессии на 16-клапанной Калине и Приоре
Производим замер компрессии в цилиндрах 11194 двигателя, который стоит на Калине, взятой для разбора.
Например: каким цветом купить диски? , каким цветом покрасить? и т. Д. Размещайте в своих бортовых журналах и спрашивайте у своих подписчиков.
Пользуйтесь поиском, часто бывает что такая запись уже есть! Повторные темы будут удаляться! 11) При создании тем рекомендуется в заглавии коротко указывать суть проблемы (3-5 слов обычно достаточно) и также при написании любых сообщений придерживаться элементарных правил правописания. У кого проблема с русским языком просьба в конце сообщения оставить сообщение для модераторов с просьбой подправить. Темы типа Хелп, Проблема, Подскажите что делать будут удаляться, равно как и темы в которых тема будет написан без элементарных знаков препинания, больших букв и т.
Д. Давайте уважать себя и других! Внимательно следите, куда и что вы пишите, что бы не получилось кучу записей и сообщество не захламлялось! О Ваших нарушениях правил сообщества будут присылаться модераторами Вам в личку. Парни, без обид, повторное нарушение правил приведт к исключению из сообщества В сообществах DRIVE2 категорически запрещается: оскорблять собеседников, использовать любые виды ругательств (втом числе замаскированные), флудить, публиковать рекламные сообщения илюбого рода объявления, писать заглавными буквами, translitom илинаиностранном языке, пропагандировать насилие, национальную илирелигиозную рознь. Нарушения этих простых правил может повлечь какблокирование аккаунта нарушителя, так изакрытие сообщества при бездействии егоорганизаторов. Более подробно сПравилами сайта можно инужно ознакомиться. Спасибо завнимание ипонимание.
Большой расход масла в двигателе: причины, как уменьшить
Расход масла выше нормы – критично! Требует повышенного внимания
В двигателе любого транспортного средства смазочные материалы так или иначе со временем расходуются без остатка. Объясняется это неизбежным попаданием этих средств в камеру сгорания со стенок цилиндров, с картерными газами или по штокам клапанов. Расход масла зависит от особенностей конструкции транспортного средства.
Норма расхода масла
В традиционных двигателях уровень потребления должен составлять от 0. 1 до 0.3% от общего расхода топлива. Если расход топлива составляет 10 литров, тогда оптимальным уровнем потребления смазочных средств будет 10-30 граммов масла на 100 км пути. Таким образом, вполне допустимо, если расход не превышает 3 литров на 10 тыс. километров пути.
Для форсированных турбомоторов, особенно с несколькими турбинами, допустимый уровень расхода масла будет уже от 0,8 до 3% от расхода топлива. Такой расход масла зависит от оборотов, на которых основное время работает двигатель. Чем больше оборотов совершается, тем больший расход топлива и масла наблюдается. Каждый владелец авто может самостоятельно определить, что представляет собой повышенный расход масла для своей машины.
Неправильно подобранная вязкость масла двигателя и внутренние утечки как причины угара масел.
Зачастую наличие факта повышенного расхода масла может быть обусловлено наличием следующих причин:
- наружной утечки, под которой подразумеваются течи через сальники и прокладки;
- внутренней утечки масла
Утечку любого рода необходимо как можно быстрее устранить, так как это вопрос безопасности эксплуатации.
Наружные утечки. Какие они бывают и что делать, чтобы их обнаружить?
Наружная утечка обычно легко определяется по каплям масла под транспортным средством.
Источники наружной утечки:
- Прокладка под клапанной крышкой. Данный вид течи является одним из наиболее распространенных. Верхняя часть движка – одна из самых разогретых его частей, при этом прокладочные материалы стареют довольно быстро. Кроме того, клапанный механизм часто подвергается разборке во время проведения ремонтных работ. Снятие и обратная установка клапанной крышки крайне негативно сказывается на долговечности прокладок. Прокладка под головкой блока течет довольно редко.
- Прокладка поддона. Течет редко, обычно из-за ослабления крепежа и старения прокладки, но этот вид течи – один из самых сложных для устранения, так как на некоторых автомобилях для снятия поддона необходимо извлечь сам двигатель.
- Прокладка передней крышки. Редкий вид течи, но также неприятный из-за тесноты в отсеке двигателя современных моделей машин. Данный факт вызывает определенные трудности при замене прокладки.
- Сальники. Утечка также может происходить через сальники: передний и задний коленвала, сальник распредвала. Сальники начинают пропускать масло от их естественного износа. Если пробег автомобиля превышает 150 000 км, то сальникам следует уделить особое внимание. Передний сальник может забрасывать маслом приводной ремень газораспределительного механизма. Задний сальник ведет к замасливанию сцепления. И то, и другое недопустимо. В случае протечки в месте стыка двигателя и коробки передач встает вопрос, откуда конкретно происходит утечка, влекущая такое огромное количество проблем. Определить это довольно просто: необходимо взять каплю протекшего масла и нанести на поверхность воды. Если капля растечется радужной пленкой по поверхности, то утечка из коробки передач.
- Уплотнение масляного фильтра. Прокладку фильтра картриджного типа может пробивать, особенно при запуске мотора при низких температурах. Причины может быть две: либо плохое качество фильтра, либо неисправность байпасного клапана масляной магистрали.
Также есть один редко встречающийся случай – одновременная небольшая утечка из всех сальников и соединений двигателя. В этом часто кроется причина, по которой двигатель буквально «потеет», из-за чего масло вытекает в огромных количествах.
В этом случае утечка не связана с качеством уплотнений. Это говорит о слишком высоком давлении картерных газов. Причина такого давления кроется в состоянии внутренних деталей двигателя. Определяется повышенное давление картерных газов по активному дымлению из трубки вентиляции картера. Данная проблема устраняется очисткой системы вентиляции картера или, в запущенных случаях, – капитальным ремонтом поврежденных двигателей.
Считается, что слишком жидкий или слишком густой уровень масла приводит к тому, что масляная пленка, формируемая маслосъемным кольцом, будет слишком тонкой или слишком толстой.
Слишком тонкая пленка плохо герметизирует камеру сгорания, вызывая прорыв капель масла вместе с картерными газами в камеру сгорания. Масло горит – отсюда и возникает неоправданно повышенный уровень расхода. Слишком сильная вязкость приводит к «всплытию» поршневых колец и также способствует слишком высокому уровню расхода. Снижению вязкости моторного масла способствуют загрязнения топливной системы; при этом топливо попадает в масло по стенкам цилиндра, и полученная смесь активно сгорает, вызывая потребление больше нужного.
Внутренняя утечка из-за маслосъемных колпачков
Самые распространенные виды внутренних утечек масла в двигателе – утечки через сальники клапанов, то есть маслосъемные колпачки.
Маслосъемные колпачки от времени и температуры теряют упругость, твердеют, изнашиваются и растрескиваются.
Изношенные клапанные втулки позволяют клапанам раскачиваться и дополнительно разбивают сальники клапанов. Масло, преодолев слабое сопротивление сальника, стекает по клапану вниз и попадает в камеру сгорания. Диагностировать проблему можно по мощному дымлению при запуске двигателя – на прогретом движке и при движении дымление более слабое.
Также признаком износа маслосъемных колпачков является замасленная резьба свечей зажигания.
Рассмотрим такую причину утечки, как внутренняя утечка из-за компрессионных и маслосъемных колец. Утечки через кольца связаны с их износом, или потерей подвижности (закоксовкой), или в связи с износом/разрушением канавок поршневых колец, или задиры на стенках цилиндров.
Угар через кольца сопровождается дымлением в двигателе. Из выхлопной трубы идет синий или сизый дым с характерным запахом. Особенно он становится заметным под нагрузкой при наборе или сбросе газа. На автомобилях с катализаторами образца текущего поколения дым может быть малозаметен, так как катализатор успевает дожечь остатки масел.
Что будет, если чрезмерное потребление масла не устранить?
В ряде случаев потребления, выходящего за пределы нормированного, двигателем испытывается недостаток смазочного материала, что может стать одной из причин сильнейшего загрязнения масляной системы, способного спровоцировать большой расход масла и значительно подкосить вашу машину. Потеря смазки ведет к падению давления масла, ускоренному износу, резкому сокращению ресурса и выходу двигателя из строя. Восстановление или замена двигателя стоят очень дорого, поэтому чрезмерное потребление смазочных средств необходимо устранять на как можно более ранней стадии появления проблемы, если не хотите разориться на новый двигатель.
Почему устранение проблемы повышенного расхода крайне важно?
Следует сразу сказать, что при высоком износе двигателя и большого вытекания смазочного материала вам потребуется ремонт двигателя. Но очень часто, особенно, когда проблема только стала проявлять себя, есть более простые, а главное, недорогие способы решения проблем, из-за которых неправильно расходуется масло.
Устранение наружных утечек.
Для решения проблем с большинством небольших наружных утечек есть простой и недорогой способ – герметик масляной системы. При первых же симптомах утечки, одним из которых является появление масляных пятен под авто или сильно загрязненный двигатель, можно использовать одно из лучших средств на рынке – немецкую присадку-герметик масляной системы Liqui Moly Oil Verlust Stop.
Присадка устраняет течь через сальники и прокладки,
восстанавливая эластичность прокладочных материалов и резины.
Присадка также действует на маслосъемные колпачки,
устраняя и этот вид внутренних утечек.
Присадка начинает действовать в полном объеме после пробега 500-800 км.
Присадка абсолютно безопасна для любого типа мотора и подходит под все существующие двигатели.
Если даже она не подействовала, то это сигнал к ремонту,
частью которого должна стать замена пришедших в негодность уплотнений.
Устранение внутренних утечек.
Если причиной больших внутренних утечек (угара) является затвердевание маслосъемных колпачков, то также рекомендуем вначале попробовать простой и недорогой способ – немецкую присадку Liqui Moly Oil Verlust Stop.
Важным моментом профилактики утечек масла является использование антифрикционных присадок, которые снижают трение и препятствуют износу двигателя. Антифрикционные присадки в двигателе продлевают его ресурс за счет сокращения износ колец, что позволит уменьшить расход масла в двигателе. Подробнее о различиях в антифрикционных присадках можно почитать здесь.
Составная часть профилактики износа заключается в использовании правильных и рекомендованных для данного типа техники смазочных материалов и регулярной промывки двигателя перед заменой смазочных средств, соблюдение рекомендованных интервалов замены. Подобрать необходимую промывку можно здесь.
Кроме того, необходимо помнить, что ускоренному расходу на угар способствует неправильная работа топливной системы. Например, если форсунки загрязнены, то они осуществляют неправильный распыл топлива в камеру сгорания, что напрямую коррелируется с величиной расхода (угара) масла.
В этом случае следует произвести очистку топливной системы, для чего также есть недорогое и простое решение – топливные присадки (в бак). Следует выбирать присадки известных уважаемых брендов, которые не только произведут очистку топливной системы, но и сделают это безопасно для всей топливной аппаратуры. Мы рекомендуем выбирать присадки в топливо немецкой компании Liqui Moly. Более подробную информацию можно почитать здесь.
ИТОГ
У каждого двигателя есть четко установленная норма потребления смазочных средств. Существует нормированный уровень расхода и расход масла больше нормы. Уровень потребления, не соответствующий установленным нормам, имеет место быть в связи с двумя факторами: внешними утечками и внутренними (угар). Если степень расхода масла небольшая и появилась сравнительно недавно, есть простые и недорогие способы устранения этой проблемы. Для этого, в первую очередь, используйте герметик масляной системы. Предотвратить не соответствующее нормам потребление вам помогут промывки масляной системы, антифрикционные присадки и присадки в топливо. Если расход выше оптимального, то от этого могут появиться иные причины увеличенного расхода масла, что, в свою очередь, приведет к большим тратам на ремонт двигателя.
что делать и можно ли исправить самому? » АвтоНоватор
Самым простым и доступным для каждого водителя способом диагностики двигателя является проверка компрессии в цилиндрах.
Проводим замер компрессии
Но, с другой стороны, замер компрессии иногда выдаёт относительные результаты и полностью на них ориентироваться не следует. Это всего лишь один из методов диагностики. Один из многих.
Первым показателем того, что в двигателе низкая компрессия в одном цилиндре, как минимум, является поведение авто во время движения. Двигатель не тянет.
Кстати, цифровые параметры значений компрессии для своего двигателя вы найдёте в Инструкции по эксплуатации.
Хотя процедура замера компрессии уже описана, коротко напомним. Замер производится на прогретом до 80 градусов двигателе, при наличии исправного и заряженного аккумулятора. Для получения точных параметров вам понадобится компрессометр.
Отключаем подачу топлива, выворачиваем свечи и замеряем компрессию, как при открытой, так и при закрытой дроссельной заслонке. Естественно нужен помощник. Получаем безрадостный результат – разная компрессия в цилиндрах.
Причин этому может быть сколько угодно: начиная от качества топлива и работы топливной системы, и заканчивая (в худшем случае) неисправностью поршней, клапанов и самих цилиндров. Не забудьте добавить сюда дефекты в прокладках и уплотнителях.
Сразу же грозной тучей надвигается неприятный вопрос, — что, неужели нужно делать капитальный ремонт двигателя? Ответ пока однозначный – нет.
Показания компрессометра есть, нужно применять их на практике
В случае, если видна низкая компрессия в одном цилиндре и при этом работа двигателя на холостом ходу неустойчива, то большая вероятность износа кулачка распредвала, который управляет выпускным клапаном.
Если разная компрессия по схеме: низкая в двух соседних цилиндрах, то, скорее всего, прогорела прокладка между ними.
И, наконец, после того, как вы долили в каждый цилиндр немного моторного масла и повторили проверку компрессии, показания повысились – изношены поршневые кольца.
Методы устранения низкой компрессии двигателя
Как мы уже говорили, причин того, что наблюдается разная компрессия в цилиндрах масса. И, если следовать «умным» книгам, то нужно вскрытие, которое, как известно, покажет причину.
Но лишь одна мысль о том, что при разборке ГБЦ на вас навалится ворох проблем, приводит в ужас. И замена колец, замена «колпачков», сальников коленчатого вала. А если и зазор между поршнем и цилиндром нарушен, то расточки блока не миновать. Нет, об этом пока не торопитесь думать.
Поэтому, первой возможной причиной того, что образовалась низкая компрессия в цилиндре, специалисты рекомендуют считать залегание колец. Это когда происходит их чрезмерное коксование, и они практически прилипают к поршню. Если вариант, который описан ниже не устранит проблему разной компрессии в цилиндрах, то понадобятся радикальные методы.
Народный способ устранения залегания колец и повышения компрессии
Данный способ не является гарантией того, что изменяться показатели компрессометра. Но, он на самом деле эффективен, если разная компрессия в цилиндрах образовалась именно из-за залегания колец. Как минимум, совесть ваша будет чиста, и вы исключите затем этот пункт из диагностики.
- Приобретаем качественную жидкость для очистки клапанов. В инструкции к ней должно быть указано, что она добавляется в моторное масло.
- Сегодня вечером выкручиваем все свечи и заливаем в цилиндры по 50-70 мл. этой жидкости при помощи «груши» или шприца.
- Утром, через 12 часов прокручиваете двигатель, затем чистите свечи и регулируете зазоры, а только затем вкручиваете их на места.
- При запуске двигателя не пугайтесь качеству и количеству дыма из выхлопной системы.
- Выезжаете на дорогу для прохождения участков на повышенных скоростях. То есть задача состоит в том, чтобы дать двигателю максимальные нагрузки. Поэтому заранее продумайте где вы это будете делать. Учтите состояние дорожного покрытия, погодных условий, интенсивности движения. В идеале это делается на загородной трассе.
- Важно! Предыдущий пункт должен быть выполнен обязательно, иначе отлипшие за ночь продукты коксования попадут под клапан и тогда не миновать разборки ГБЦ.
- После пробега со скоростью в 100-120 км/час на участке в 10-20 км. вновь производите замер компрессии в цилиндрах.
Здесь существует два варианта: радость и ощущение счастья от увиденных цифр одинаковой компрессии, которая соответствует норме. Или горечь от предстоящей операции с разборкой ГБЦ и диагностики двигателя. Третьего не дано.
Удачи вам при устранении разности компрессии в цилиндрах.
Мнение эксперта
Руслан Константинов
Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.
Если в одном из «горшков» давление существенно ниже, чем в других (к примеру, везде 11,5, а в единственном 6,0 атмосферы) это свидетельствует о разности компрессии. Естественно это негативно сказывается на работе силового агрегата. Нередко падение компрессии может наблюдаться и в нескольких «»гошках»». Однако в таком случае можно смело утверждать, что двигатель нуждается в срочном капитальном ремонте. Причин падения компрессии может быть немало, для устранения требуется демонтаж ГБЦ. Вот основные причины:
1. Пробитая (прогоревшая) прокладка ГБЦ. Одна из самых частых причин, «лечится» заменой данного элемента.
2. ГБЦ затянута недостаточно. Собственно из этого следует вышеупомянутая причина, прокладка начинает пропускать давление и со временем ее пробивает.
3. Пропускают кольца. Подобное явление актуально, если уплотнительные кольца сильно изношены или сломаны. Если давление просело в одном «»горшке»», гарантированно кольца сломаны. В таком случае требуется капитальный ремонт двигателя.
4. Закоксованность. Кольца покрываются коксом по причине использования некачественного моторного масла или при условии большого пробега. Масло выгорает, и кольца прилипают на одном месте, не имея возможности ходить по своим канавкам. Стачивается только одна сторона, соответственно двигатель быстрее изнашивается. На закоксованность указывает падение компрессии по всех цилиндрах.
5. Износ стенок блока цилиндров. Явление редкое, возникает чаще всего из-за использования производителем некачественных материалов.
6. Перегрев ДВС. Если двигатель перегревается кольца и стенки блока начинают пропускать давление, а вместе с ним и масло. Частично можно определить по сизому дыму из выхлопной трубы.
7. Прогар поршня. Если поршень будет сломан, компрессия в цилиндрах будет равна фактически нулевому значению. Прогореть он может как сверху, так и сбоку. Нередко поршни ломаются при обрыве ремня ГРМ, когда вследствие нарушения фаз газораспределения встречаются с клапанами.
8. Клапана. Компрессия может упасть из-за их неправильной регулировки, из-за прогара или облома при обрыве ремня ГРМ.
Lada Priora. Не заводится
Слова «Зима» и«Не заводится» всегда стоят рядом, потому что такое время года является хорошей проверкой технического состояния автомобиля.Это с одной стороны. А с другой стороны зима помогает некоторым водителям избавиться от жадности и перестать покупать бензин для своего автомобиля по смешной и низкой цене — как в нашем случае с автомобилем Лада Приора.
На фото автомобиль уже в процессе ремонта.
Сначала машина попала к нашим электрикам-электронщикам, почему-то люди всегда думают, что если машина не заводится, то в этом виновата прежде всего электроника. Но как оказалось, эти глубокие и сложные технические сферы тут не при чем: наши коллеги после проведения своих проверок замерили компрессию и помахали нам рукой (мы в одном цеху работаем):
— Ребята, это ваш автомобиль, тут нет компрессии!
Между прочим, это очень удобно, когда в одном ремонтном боксе работают и механики, и электрики, и электронщики: не получается что-то у нас или есть какие-то вопросы – мы к ним. Если у них есть вопросы по механической части – они к нам обращаются.
Начали проверять. Компрессии нет в первом и четвертом цилиндрах. А тут и время обеда наступило – пообедали, а потом решили еще раз попробовать запустить мотор. И тут – о чудо, машина завелась сразу же. С «пол-пинка», как говорится. Мы переглянулись и ничего пока не поняли; чем дальше, тем интереснее? Вот не было компрессии, а постояла машина чуток в тепле – и завелась. И компрессия появилась как из сказки.
Напарник спросил:
— Тебе такое попадалось?
Я пожал плечами:
— Пока непонятно, но есть кое-какие мысли.
Мы хотели посмотреть видеоскопом картину внутри цилиндров, но не получилось. Провели другие проверки. Так как вместе с Сергеем работаем давно (это мой напарник), то много друг другу не объясняли:
— Похоже на бензин?
— Да вроде есть такая беда…
Потому и решили снять «голову», посмотреть что и как.
Вы удивились? При чем тут «бензин» и «снять голову», то есть, головку блока цилиндров?
Знаете, нам попадались, и даже совсем недавно автомобили, в которых проблема зимнего незапуска по утрам заключалась в бензине: KIA Rio выпуска 2011 года. Свежак, как говорится. Проблема единственная: «не заводится». Это было начало 2013 года и тогда морозы были не сильно большие, но их хватало, чтобы машина не завелась утром.
Клиент рассказал нам чудные вещи: наш автосервис был уже четвертым по счету. В первом ему приговорили стартер – и поменяли. Во втором автосервисе неисправность нашли в топливном насосе – и тоже поменяли. Насчет третьего клиент уже не рассказывал, только рукой махнул.
И что самое удивительное, после замены стартера, топливного насоса и чего-то еще – машина бодро так заводилась, специалисты довольно улыбались и провожали клиента, согревая в руке полученные деньги. А потом машина ночь стояла на улице, морозилась до утра и далее привычное: «Не заводится».
Проверили у этой Киа компрессию – нет компрессии. Тогда тоже переглядывались: «Бензин?», «Да похоже на то …».
Но постарались обойтись малой кровью: поставили мотор на усиленную промывку и это помогло – машина стала заводиться с пол-пинка.
Ну а здесь, на этой Ладе Приоре, после осмотра мы решили, что болезнь зашла слишком далеко, лечить её надо операбельно – снимать «голову», смотреть.
Сняли. Посмотрели. Вытащили клапана – еле вытащили, потому что они в направляющих еле-еле ходят. Клапана реально «выдирали», помогая себе добрыми русскими словами.
Все собрали обратно, запустили мотор – он завелся как только ключ увидел. Все нормально. Выгнали на мороз, а мороз в тот день усилился, к вечеру завели – запуск снова нормальный. Машину отдали клиенту. Он покатался несколько часов, потом позвонил: «Небо и земля! – сказал он – на педаль почти не нажимаю, сама едет!».
Ну а мы победу не праздновали — была причина: когда клиент пришел забирать автомобиль, мы сказали ему, что «надо обязательно поменять бензин в баке. Обязательно!». На что клиент сильно удивился, разволновался и категорически отказался это делать. Вот поэтому победу мы не праздновали, ждали и … утром дождались: позвонил клиент и убитым голосом сказал: «Опять то же самое».
Конечно, тут никакой нашей вины нет – мы настоятельно рекомендовали клиенту заменить бензин в баке, а он отказался. Трудно сказать почему. Эйфория снова работающей машины, может быть…
Но надеялись на лучшее: утром, когда клиент притащил машину, снова померяли компрессию. Не обрадовало: компрессии нет ни в одном из цилиндров. Полный ноль. Но надежды еще не теряли, надеялись, что проблема не сильно большая, такое может случиться из-за некачественного топлива, из-за воды в баке плюс мороз. Отсюда наледь и клин на клапанах. Поставили в тепло, надеялись, что если это вода – отогреется.
Но не повезло, не отогрелась, потому пришлось начинать все заново: снятие головки, изучение проблемы, которая оказалась намного серьезнее, чем была: все впускные загнуло, а третий клапан закис до такой степени, что застрял в направляющей и его пришлось выдирать наружу вместе с направляющей.
Если эту историю будут читать владельцы автомобилей, то немного поясню о чем разговор, давайте взглянем на рисунок:
Это детали механизма привода клапанов: 1 – клапан; 2 – направляющая втулка; 3 – стопорное кольцо; 4 – маслоотражательный колпачок; 5 – опорная шайба пружин; 6 – внутренняя пружина; 7 – наружная пружина; 8 – тарелка пружин; 9 – сухари; 10 – регулировочная шайба; 11 – толкатель.
У направляющих клапанов есть две функции: отвод тепла от клапанов и оттарированная посадка клапана в седле.
Что получилось у нас: клапан 1 намертво вклеился в направляющую втулку 2 и без нее никак не выходил наружу. Вот это и пришлось «выдирать» — вместе. История с полной разборкой и приведением в порядок головки блока цилиндров повторилась.
Было заменено и поставлено все новое.
А теперь пришло время показать причину неисправности: клапан с близкого расстояния, где хорошо видны отложения. Клапан отработал всего 3 часа, так как он новый.
Причина всех бед и неприятностей видна на клапане – отложения. И это уже отмытый клапан, очищали его для эксперимента чтобы понять, что за состав был внутри того старого бензина.
Отмывали – не отмыли, если браться руками – пальцы прилипают как на хороший клей и потом пальцы трудно отмыть даже бензином. Когда было тепло, этот состав на клапанах становился немного пластичным и позволял клапанам ходить в направляющих. А чуть температура опускалась ниже – отложения застывали и лучше чем космический суперклей намертво зажимали стержень клапана в направляющей.
Что дальше? Топливный бак, скорее всего, придется менять, потому что отмыть его от того, старого бензина вряд ли получится. Ну а топливопроводы придется промывать весьма тщательно и не один раз. Или менять?
Заправлялся наш клиент в Подмосковье. – Что за заправка такая?,- поинтересовались мы и услышали в ответ, что «на той заправке очень хорошие скидки на бензин: при покупке карты на постоянное обслуживание, скидка на литр может достигать около 60 копеек».
Воистину: «скупой платит дважды».
Трусов А.М.
© Легион-Автодата
Трусов Андрей Михайлович
г.Электросталь (Московская обл.), пр-т Мира, д.27-а
автотехцентр «Good Hands»
Двигатель с воспламенением от сжатия — обзор
Топливо с воспламенением от сжатия
Двигатель с воспламенением от сжатия обычно работает на дизельном топливе, а в последнее время — на биодизельном топливе. Некоторые желательные рабочие характеристики дизельного топлива включают (1) высокое тепловыделение при сгорании, (2) летучесть, которая сохраняет его в жидком состоянии, пока температура не станет намного выше точки кипения воды, (3) быстрое воспламенение от сжатия (без искры). ), когда степень сжатия составляет примерно 15 к одному или выше, и (4) образование тонкого однородного тумана при прокачке топлива через топливные форсунки в каждом цилиндре.
Характеристики дизельного топлива почти противоположны характеристикам бензина. Бензин легко испаряется в воздух и не воспламеняется при сжатии в цилиндре двигателя. Перед впрыском топлива в цилиндре дизельного двигателя сжимается воздух, поэтому преждевременное зажигание быть не может. Дизельное топливо испаряется, когда мелкие частицы тумана из топливных форсунок воспламеняются в горячем сжатом воздухе. Топливо также смазывает топливный насос форсунки. Цетановое число дизельного топлива характеризует склонность топлива к воспламенению.Стандарты США для дизельного топлива требуют минимального цетанового числа 40. Механическое различие между дизельным двигателем и бензиновым двигателем заключается в том, что свечи зажигания заменяются топливными форсунками.
Заливать бензин в бак для дизельного топлива и наоборот — не лучшая идея. Многие заправочные станции продают оба вида топлива. Сопло на бензонасосе больше, чем на дизельном топливном насосе. Отверстие под крышкой топливного бака на топливном баке для дизельного топлива меньше, чем топливная форсунка для бензина, поэтому вы не можете заправить дизельный бак бензином.Однако форсунка для дизельного топлива будет заполнять топливный бак , поэтому покупатель будьте осторожны!
При разработке альтернативных видов топлива ученый / инженер в области топлива сначала переводит физические свойства, такие как летучесть и легкость воспламенения, в молекулярные свойства, такие как размер и форма молекул. Создание топлива становится управляемой задачей, поскольку молекулы в основном содержат атомы углерода, водорода и кислорода, за некоторыми исключениями.
Небольшие молекулы, содержащие десять или меньше атомов углерода, более летучие и делают бензин искровым топливом.Слово октан в «октановой шкале» — это химическое название восьмиуглеродной молекулы, которая содержится в бензине. Это хорошая репрезентативная молекула для бензина. Чистому изооктану присваивается октановое число 100, и оно использовалось для определения эмпирической октановой шкалы в 1930 году.
Дизельное топливо содержит молекулы с восемью или более атомами углерода и менее летучие, чем бензин. У них есть цетановое число, которое характеризует хорошие топлива с воспламенением от сжатия. Слово цетан в «цетановой шкале» — это название молекулы из 16 атомов углерода, которая представляет «хорошее» дизельное топливо.Молекулы с атомами углерода, расположенными в прямые цепи, имеют высокое цетановое число и являются лучшим топливом для двигателей с воспламенением от сжатия. Молекулы, в которых атомы углерода образуют кольца (бензол или толуол) или разветвленные цепи (например, изооктан), как правило, лучше подходят для искрового зажигания.
Сегодня нефтеперерабатывающие заводы используют перегруппировку молекул (каталитический риформинг) для получения от шести до восьми атомов углерода с разветвленной конфигурацией. Это увеличивает долю бензина, производимого на баррель сырой нефти, и бензин имеет более высокое октановое число, чем может быть получено простой перегонкой.Спецификации дизельного топлива легче достичь с помощью простых процессов нефтепереработки, поэтому для производства дизельного топлива требуется небольшой молекулярный дизайн. Дизельное топливо представляет собой смесь различных потоков нефтеперерабатывающих заводов, которые направляются в резервуар для смешивания и смешиваются для получения нужной летучести и цетанового числа, чтобы получилось «хорошее» дизельное топливо.
Эффективная степень сжатия — обзор
Влияние клапанного механизма на чрезмерное расширение
Одним из методов повышения теплового КПД двигателей внутреннего сгорания является концепция большего цикла расширения или чрезмерного расширения.Об этом упоминалось в [5]. [167] и реализован в мотоциклетном двигателе [168] как так называемый двигатель цикла Аткинсона. Этот метод оценивает улучшение теплового КПД и снижение удельной мощности в зависимости от отношения степени расширения к степени сжатия [14].
Оригинальный цикл Аткинсона был реализован в двигателях внутреннего сгорания, увеличивая ход расширения и поддерживая постоянным ход сжатия с помощью различных и сложных механических решений [169].
В системе VVA можно реализовать новую версию цикла Аткинсона, сохраняя постоянную степень расширения и регулируя эффективную степень сжатия путем опережения или замедления IVC [170]. В двигателях SI переход от стандартного цикла Отто к циклу Аткинсона с опережением или замедлением IVC подразумевает уменьшение массы воздушно-топливной смеси внутри цилиндра, и это снижает удельную мощность двигателя. В двигателях CI цикл Аткинсона только уменьшает массу воздуха внутри цилиндра, но количество впрыскиваемого топлива можно поддерживать постоянным.
Три версии цикла Аткинсона были оценены путем постепенного продвижения IVC к такту сжатия (EIVC), а также регулировки открытия впускного клапана и максимального подъема [108]. Результаты подтвердили сокращение выбросов NO x от 17,5% в режиме холостого хода до 12,9% при полной нагрузке. Это было связано с более низкой эффективной степенью сжатия и массой воздуха, захваченной в цилиндре. Это снижает температуру, давление и плотность в конце такта сжатия, что приводит к более низким температурам пламени и выбросам NO x .Полученные высокие выбросы CO указывают на ухудшение процесса горения.
Использование усовершенствованной IVC было выгодно для выбросов NO x и расхода топлива при полной нагрузке [171]. В свою очередь, выбросы дыма увеличились, но всегда были относительно низкими. Также сообщалось, что при работе цикла Миллера с частичной нагрузкой наблюдались проблемы из-за неоптимизированной (слишком ранней) IVC.
Были получены сопоставимые результаты для шестицилиндрового двигателя HD CI, работающего с EIVC и двухступенчатой системой наддува [172].Потребление топлива сократилось на 2%, тогда как выбросы NO x снизились на 10%.
В исх. [170] сообщалось, что продвижение IVC является подходящей стратегией для воспроизведения новой концепции цикла Аткинсона в двигателях CI. Цикл Аткинсона снижает эффективную степень сжатия и массу на входе, давление газа в цилиндрах, температуру и плотность. Цикл Аткинсона увеличивает время задержки самовоспламенения, способствуя сгоранию с высоким содержанием предварительного смешения с более низкими температурами пламени.Это также уменьшает INO x , но увеличивает выбросы Isoot и ICO из-за контролируемого смешением ухудшения диффузионного горения. Опережающая IVC, генерируемая циклом Аткинсона, немного снижает КПД двигателя из-за уменьшения эффективной степени сжатия и смещения процесса сгорания в сторону такта расширения. Использование системы рециркуляции отработавших газов позволяет лучше снизить концентрацию кислорода на входе. Цикл Аткинсона позволяет контролировать выбросы NO x , но гораздо лучшие результаты с точки зрения сажи, CO и расхода топлива могут быть достигнуты путем увеличения давления на входе до восстановления исходного соотношения воздух: топливо.
Toyota разработала сверхэкономичные малолитражные двигатели с циклом Аткинсона [173]. Эти двигатели имеют впускной канал измененной формы, предназначенный для создания сильного качающегося потока внутри цилиндра, и охлаждаемую систему рециркуляции выхлопных газов, интеллектуальную электрическую технологию регулирования фаз газораспределения Toyota (VVT-iE), предназначенную для выполнения функции остановки на холостом ходу.
В справочнике [174] обсуждается двигатель V6 объемом 3,5 л с циклом Аткинсона и VVT-iW (регулируемая фаза газораспределения с интеллектуальным расширенным впуском), оснащенный технологией Toyota D-4S, обеспечивающей как прямой, так и портовый впрыск топлива.
Одним из способов использования эффекта большего расширения является раннее или позднее закрытие впускного клапана. 10% -ное преимущество BSFC может быть достигнуто в газовом двигателе SI с когенерационным наддувом как за счет раннего закрытия поворотного клапана, так и за счет позднего закрытия исходного впускного клапана [175]. Коммерческий гибридный автомобиль, в котором использовался бензиновый двигатель без наддува, достиг примерно 12% улучшения теплового КПД при степени расширения 14,7, где применялись позднее закрытие и ожидаемая степень сжатия 9 [176].
В некоторых исследованиях изучался эффект большего расширения в двигателе SI с измененной синхронизацией впуска и фиксированным фазированием кулачка [177, 178] [177] [178]. Согласно исх. [177], EIVC может обеспечить повышение теплового КПД на 7% при степени расширения более 16, когда сравнение проводилось при постоянном среднем эффективном давлении тормоза (b MEP ). Существенное начало сжатия соответствует моменту закрытия впускного клапана, определяемому как точка подъема на 1 мм. Согласно исх. [178], применение LIVC улучшает тепловой КПД, хотя сопровождается уменьшением b MEP .
Управление количеством заряда с помощью переменной синхронизации IVC может улучшить механический КПД многоцилиндровых двигателей за счет снижения насосных потерь [179].
В двигателе Mazda V6 с циклом Миллера впускные клапаны закрываются при 47 градусах после НМТ (т. Е. В самом нижнем положении поршня во время цикла) [180]. Следовательно, в течение первых 20% хода сжатия впускные клапаны остаются открытыми, и, таким образом, воздух выходит без сжатия. Настоящее сжатие активируется в течение оставшихся 80% хода.Следовательно, реальная полезная мощность двигателя составляет всего 80% от объема камеры сгорания. Степень сжатия уменьшена с 10: 1 до чуть менее 8: 1 [181].
В исх. [180] сообщалось, что двигатель цикла Миллера требует использования нагнетателя. Конечным результатом более короткого хода сжатия цикла Миллера является повышенная степень расширения двигателя.
Турбонаддув высокого давления включает реализацию двухступенчатой системы турбонаддува вместе с экстремальным циклом Миллера (EIVC) и может снизить NO x до 40%.Если требуется лишь незначительное снижение NO x , еще одним преимуществом двухступенчатой системы турбонаддува вместе с экстремальным циклом Миллера является экономия топлива на 4,8% во всем рабочем диапазоне двигателя за счет повышения эффективности системы турбонаддува. и улучшенная эффективность цикла, как показано в Refs. [182–185] [182] [183] [184] [185].
Как проверить компрессию двигателя — Блог AMSOIL
Компрессия двигателя = мощность двигателя. Простое уравнение может понять даже мы, не инженеры.В этом посте мы рассмотрим, как проверить компрессию двигателя.
Что такое компрессия двигателя?
Однако сначала давайте определимся с нашими терминами.
Компрессия двигателя означает давление, которое ваш двигатель создает в цилиндрах во время работы.
То, сколько давления производит двигатель и насколько хорошо он преобразует это давление в полезную работу, влияет на эффективность и мощность вашего двигателя.
Как все это работает и как износ и отложения могут разрушить сжатие (т.е. лошадиных сил) со временем являются интересными темами, о которых вы можете подробнее прочитать здесь. Но сегодня мы говорим о том, как проверить компрессию двигателя.
В этом примере я использовал свою Toyota Corolla 1998 года выпуска. Не смейся. Я заплатил за это наличными, и он работает гладко, как швейная машинка. Я также обратился за помощью к Пату Бурграффу, одному из техников нашей механической лаборатории.
Посмотрите видео или пошаговые инструкции, чтобы узнать, как проверить компрессию двигателя.
Необходимое время: 30 минут.
Как проверить компрессию двигателя
- Убедитесь, что автомобиль не заводится, когда вы проворачиваете его выше
Проверка компрессии требует, чтобы вы проворачивали двигатель на несколько оборотов, и вы не хотите, чтобы он сработал в процессе. Снимите предохранители топливного насоса и системы впрыска топлива, чтобы газ не попадал в цилиндры при каждом запуске двигателя. Затем отсоедините блоки катушек. Имейте в виду, что процесс для вашего автомобиля может отличаться от изображения здесь.
- Потяните за свечи зажигания
Пометьте провода свечи, чтобы вы вернули их в правильное положение.В противном случае ваш автомобиль не заведется, когда вы закончите. Вверните манометр в отверстие свечи зажигания. Будьте осторожны, не перекручивайте его. Вы можете купить тестер сжатия менее чем за 50 долларов в большинстве магазинов автозапчастей.
- Прокрутите двигатель
Попросите помощника провернуть двигатель 5-10 раз или до тех пор, пока стрелка манометра не перестанет вращаться. Отметьте psi и перейдите к следующему цилиндру.
- Запишите результаты
Запишите результаты для каждого цилиндра, чтобы вы могли сравнить и определить, слишком ли низкая компрессия в одном цилиндре.
Что считается «нормальной» степенью сжатия двигателя?
Здесь все становится неясным. «Хорошая» компрессия зависит от двигателя. К сожалению, двигатели не имеют надлежащей компрессии с внешней стороны.
Но хорошее практическое правило гласит, что каждый цилиндр в механически исправном двигателе должен иметь сжатие 130 фунтов на квадратный дюйм или выше.
Хотя я видел, как некоторые люди утверждали, что 100 фунтов на квадратный дюйм достаточно, редукторы и другие источники, с которыми я консультировался, считают это слишком низким.
Кроме того, вам нужна последовательность от одного показания к другому.
Опять же, хорошее практическое правило — не более 10 процентов отклонения между любым из цилиндров.
Нельзя сказать, что отклонение одного цилиндра на 15 или 20 процентов означает, что ваш двигатель не работает. Но хороший, исправный двигатель должен демонстрировать минимальные отклонения.
Моя верная Corolla прошла тест, давая давление в каждом цилиндре от 165 до 175 фунтов на квадратный дюйм.
Быстрая проверка, если в одном из цилиндров низкая компрессия
Если один цилиндр имеет низкую степень сжатия, попробуйте налить около чайной ложки масла в отверстие свечи зажигания и повторно протестировать .Если компрессия увеличивается, вероятно, кольца застряли или изношены. Масло действует как уплотнение и помогает закрыть зазор между кольцами и стенкой цилиндра, через который цилиндр теряет давление.
Если это не помогает, возможно, клапаны или их уплотнения изношены.
Если вы подозреваете, что кольца застряли, попробуйте промывку двигателя, предназначенную для удаления отложений, такую как промывка двигателя и трансмиссии AMSOIL.
Вы также можете попробовать присадку к топливу, которая очищает поршни, например AMSOIL P.я.
Слово мудрым: вы можете зажечь индикатор проверки двигателя, выполняя этот тест, как это сделал я. Тем не менее, проехав несколько миль, он сработал сам.
Обновлено. Первоначально опубликовано 13 марта 2017 г.
Четырехтактный двигатель внутреннего сгорания
4-тактный двигатель внутреннего сгорания | ГленнИсследовательский центр |
Это анимированный компьютерный рисунок одного цилиндра Райт. Авиадвигатель братьев 1903 года.Этот двигатель приводил в действие первый, тяжелее воздушные, самоходные, маневренные, пилотируемые самолеты; Райт Флаер 1903 года. Двигатель состоял из четырех цилиндры как показано выше, с каждый поршень подключен к общему коленчатый вал. Коленчатый вал был соединен с двумя противоположно вращающимися. пропеллеры который произвел тяга, необходимая для преодоления сопротивление самолета.
Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить основы работа двигателя.Этот тип внутреннее сгорание двигатель называется четырехтактный двигатель , потому что есть четыре движения, или удары поршня перед повторением всей последовательности запуска двигателя. Четыре штриха описаны ниже с некоторыми неподвижными фигурами. В анимации и на всех рисунках мы раскрасили система впуска топлива / воздуха красный, электрическая система зеленый, а вытяжная система синий. Мы также представляем топливно-воздушную смесь и выхлопные газы небольшими цветные шарики, чтобы показать, как эти газы проходят через двигатель.Поскольку мы будем иметь в виду движение различных частей двигателя, вот рисунок, показывающий названия частей:
Ход на впуске
Двигатель цикл начинается с впускной ход как поршень тянул в сторону коленчатого вала (на рисунке слева).
Впускной клапан открыт, топливо и воздух проходят через клапан. и в камеру сгорания и цилиндр от впускного коллектора, расположенного в верхней части камеры сгорания.Выпускной клапан закрыт, а электрический контактный выключатель разомкнут. Топливно-воздушная смесь находится на относительно низком уровне. давление (около атмосферного) и окрашен в синий цвет на этом рисунке. В конце такта впуска поршень расположен в крайнем левом углу и начинает двигаться назад в сторону верно.
Цилиндр и камера сгорания заполнены топливно-воздушной смесью низкого давления. и, когда поршень начинает двигаться вправо, впускной клапан закрывается.
Историческая справка — Открытие и закрытие впускного клапана двигателя Wright 1903 был назван братьями «автоматическим».Он основан на немного более низком давлении внутри в цилиндре во время такта впуска, чтобы преодолеть силу пружины, удерживающей клапан в закрытом состоянии. Современные двигатели внутреннего сгорания делают не работайте так, но используйте кулачки и коромысла, как выхлопную систему братьев. Кулачки и коромысла обеспечивают лучший контроль и время открытия и закрытие клапанов.
Ход сжатия
Когда оба клапана закрыты, комбинация цилиндра и камеры сгорания образуют полностью закрытую емкость, содержащую топливно-воздушную смесь.Как поршень сдвигается вправо, объем уменьшается, а топливно-воздушная смесь сжатый во время ход сжатия.
Во время сжатия нет высокая температура переходит в топливно-воздушную смесь. Поскольку объем уменьшается из-за движения поршня, давление в газе увеличился, как это описано по законам термодинамика. На рисунке смесь окрашена желтый цвет означает умеренное повышение давления. Чтобы создать повышенное давление, мы должны сделать работай на смеси, просто поскольку вам нужно выполнить работу, чтобы накачать велосипедную шину с помощью насоса.Во время такта сжатия электрический контакт остается разомкнутым. Когда объем самый маленький, и давление самое высокое, как показано на рисунке, контакт замкнут, и поток электричество течет через вилку.
Рабочий ход
В начале рабочего хода электрический контакт размыкается. Внезапное размыкание контакта вызывает искру в камере сгорания, которая воспламеняет топливно-воздушную смесь. Стремительный горение топливных выбросов высокая температура, и производит выхлопные газы в камере сгорания.
Поскольку впускные и выпускные клапаны закрыты, сгорание Топливо находится в полностью закрытом сосуде (и почти постоянного объема). В сгорание увеличивает температура выхлопных газов, остаточного воздуха в камере сгорания, и в самой камере сгорания. От закон идеального газа, повышенная температура газов также вызывает повышенное давление в камере сгорания. Мы покрасили газы в красный цвет на рисунке. для обозначения высокого давления.Высокое давление газов, действующих на лицевой стороной поршня заставляет поршень перемещаться влево, что инициирует рабочий ход.
В отличие от такта сжатия, горячий газ воздействует на поршень во время рабочего такта. Сила на поршне передается штоком поршня на коленчатый вал, где линейный движение поршня преобразуется в угловое движение коленчатого вала. Работа сделано на поршне, затем используется для вращения вала и пропеллеров, и для сжатия газов в такте сжатия соседнего цилиндра.Имея возникла искра зажигания, электрический контакт остается разомкнутым.
Во время рабочего такта объем, занимаемый газами увеличивается из-за движения поршня и нет высокая температура переходит в топливно-воздушную смесь. Поскольку объем увеличивается из-за движения поршня, давление и температура газа уменьшилось. Мы покрасили «молекулы» выхлопных газов в желтый цвет, чтобы обозначить умеренное давление. в конце рабочего хода.
Историческая справка — Способ получения электрической искры братья Райт называли соединением «замыкай и прерывай».Там подвижные части, расположенные внутри камеры сгорания. Современное внутреннее сгорание двигатели не используют этот метод, а вместо этого используют свечу зажигания, чтобы произвести искра зажигания. Свеча зажигания не имеет движущихся частей, что намного безопаснее, чем метод, используемый братьями.
Ход выхлопа
В конце рабочего хода поршень находится в крайнем левом положении. Нагрейте это осталось от рабочего хода сейчас переведен к воде в водная куртка пока давление не приблизится к атмосферному давление.Затем открывается выпускной клапан. кулачком, нажав на коромысло, чтобы начать такт выхлопа.
Назначение выхлопа ход заключается в очистке цилиндра от отработанного выхлопа для подготовки к следующему цикл зажигания. В начале такта выпуска цилиндр и камера сгорания заполнены. продуктов выхлопа при низком давлении (окрашены в синий цвет на рисунке выше). Потому что выпускной клапан открыт, выхлопные газы проходят мимо клапана и выходят из двигателя. Впускной клапан закрыт, а электрическая контакт открыт во время этого движения поршня.
В конце такта выпуска выпускной клапан закрывается и двигатель начинается еще один такт впуска.
Историческая справка — Выхлопная система, используемая братьями Райт заставил горячий выхлоп выйти из каждого цилиндра независимо … пилоту. Этот двигатель тоже был очень громким. Коллекционируют современные автомобили выхлоп из всех цилиндров в выпускной коллектор (точно так же, как впускной коллектор б / у братьев). Выпускной коллектор проходит через выхлоп к каталитическому нейтрализатору для удаления опасных газов, а затем через глушитель, чтобы он не шуметь, и, наконец, выхлопную трубу.
Теперь вы сможете понять
анимация вверху этой страницы. Обратите внимание, что коленчатый вал делает два
оборотов за каждый оборот кулачков. Это движение контролируется
временная цепь. Также обратите внимание, как кулачок перемещает выпускной клапан.
в нужный момент и как быстро впускной клапан открывается после выпуска
клапан закрыт. В реальной работе двигателя ход выпуска не может вытолкнуть все
выхлоп из цилиндра, поэтому настоящий двигатель работает не так хорошо, как
идеальный двигатель описан на этой странице.Когда двигатель работает и нагревается, производительность
изменения. Современные автомобильные двигатели регулируют соотношение топливо / воздух с компьютерным управлением.
топливные форсунки для поддержания высокой производительности. Братьям просто нужно было смотреть
мощность их двигателя упала с примерно 16 лошадиных сил, когда двигатель был
сначала начал примерно с 12 лошадиных сил, когда он был горячим.
Деятельность:
Экскурсии с гидом
Навигация ..
- Руководство для начинающих Домашняя страница
Что такое цикл горения Аткинсона и каковы его преимущества?
Подобно бесчисленному множеству других изобретателей, предпринимателей и мастеров XIX века, британский инженер Джеймс Аткинсон искал способы улучшить четырехтактный двигатель внутреннего сгорания Отто, впервые выпущенный в 1876 году.Двигатель, который он запатентовал в 1882 году, имел переменную длину хода, обеспечиваемую многорычажным шатуном между поршнем и маховиком. Хотя двигатели Аткинсона не увенчались успехом, его термодинамический цикл все еще широко используется, в основном в газо-электрических гибридах. Ключевым преимуществом является более высокий КПД по сравнению с двигателем Отто, хотя и с некоторой потерей мощности на низких оборотах. Цикл Аткинсона идеален для гибридов, потому что их электродвигатели компенсируют потерю мощности на низких оборотах.
Цикл Аткинсона задерживает закрытие впускного клапана до тех пор, пока поршень не завершит от 20 до 30 процентов своего движения вверх на такте сжатия.В результате часть свежего заряда возвращается во впускной коллектор поднимающимся поршнем, поэтому цилиндр никогда не заполняется полностью (отсюда и снижение мощности на низких оборотах). Выплата происходит после зажигания , когда поршень начинает опускаться на такте расширения (также называемом силовым). В соответствии с оригинальным мышлением Аткинсона, укороченный ход впуска в сочетании с полным ходом расширения выжимает больше работы из каждого приращения топлива.
В большинстве двигателей степень сжатия устанавливается настолько высокой, насколько двигатель может выдержать детонацию в погоне за мощностью и эффективностью.Степени сжатия и расширения в двигателе Отто такие же. Аткинсон выигрывает по эффективности, потому что его степень расширения значительно больше, чем степень сжатия.
Американский инженер Ральф Миллер присоединился к другому полезному патенту в 1957 году. Его цикл был предназначен для использования с двух- и четырехтактными двигателями, работающими на бензине, дизельном или газообразном топливе, таком как пропан. Добавленный ингредиент представляет собой нагнетатель, который обеспечивает всасываемый заряд с промежуточным охлаждением и давлением, чтобы компенсировать потерю мощности на низкой скорости при подходе Аткинсона.Миллер также призвал к созданию «клапана контроля сжатия», чтобы время от времени стравливать избыточное давление из камеры сгорания. Mazda Millenia, продаваемая здесь с 1994 года, была самым известным серийным автомобилем, в котором использовался цикл Миллера.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.
Двигатели с циклом МиллераДвигатели с циклом Миллера
Двигатели с циклом МиллераHannu Jääskeläinen
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Циклы двигателя, в которых эффективная степень сжатия меньше эффективной степени расширения, называются циклами чрезмерного расширения. Цикл Миллера — это сверхрасширенный цикл, реализованный либо с ранним (EIVC), либо с поздним (LIVC) закрытием впускного клапана. Цикл Миллера реализован как в дизельных, так и в двигателях с искровым зажиганием. В дизелях цикл Миллера использовался в основном для контроля выбросов NOx при высокой нагрузке двигателя.В двигателях с искровым зажиганием преимущества цикла Миллера включают снижение насосных потерь при частичной нагрузке и повышение эффективности, а также снижение детонации.
Циклы Миллера и Аткинсона
Циклы двигателя, в которых эффективная степень сжатия меньше, чем эффективная степень расширения (см. Обсуждение степени сжатия в разделе Основы двигателя ), могут называться сверхрасширенными циклами. В современной практике сверхрасширенные циклы реализуются либо с ранним (EIVC), либо с поздним (LIVC) закрытием впускного клапана.Основным эффектом EIVC и LIVC является снижение температуры в конце такта сжатия. Более низкая температура позволяет использовать более высокие геометрические степени сжатия, что дает более длительную степень расширения и повышение эффективности.
Чрезмерно расширенные циклы обычно называют циклами Миллера или Аткинсона; имея в виду изобретателей Ральфа Миллера и Джеймса Аткинсона. Использование этих терминов в литературе непоследовательно.
Ральф Миллер , а не , задумал идею использования фаз газораспределения для управления эффективной степенью сжатия.Об этом свидетельствует тот факт, что он обсуждался в отчете 1927 года как вариант ограничения детонации в авиационных двигателях при использовании низкооктанового топлива [3522] .
Миллера в первую очередь интересовало использование момента закрытия впускного клапана для ограничения температуры ВМТ. В двух своих патентах он описал механизмы изменения фаз газораспределения впускных клапанов, которые позволяли IVC изменяться в зависимости от нагрузки двигателя, чтобы контролировать температуру в цилиндрах в конце такта сжатия. Он заявил о своих идеях без наддува и с принудительной индукцией дизельного топлива и искровым зажиганием [1938] [1939] .Миллер стремился увеличить удельную мощность. В патенте 1954 года температура в конце сжатия должна была снижаться по мере увеличения нагрузки, чтобы двигатель мог сжигать больше топлива при полной нагрузке, оставаясь в пределах свойств материала. Он был специально предназначен для двигателей с наддувом и промежуточным охлаждением. Патент 1956 года был предназначен специально для двигателей SI и был предназначен для предотвращения преждевременного зажигания и обеспечения более высокого соотношения топливо / воздух при полной нагрузке при сохранении высокой геометрической степени сжатия.
Рисунок 1 . Стратегия Миллера EIVC и ее влияние на температуру в цилиндрах и требования к давлению во впускном коллекторе для форсированного дизельного двигателяПатент США 2,670,595 | 2 марта 1954 г.
Хотя Миллер упоминает как раннее, так и позднее закрытие впускного клапана, он, похоже, предпочитал закрывать впускной клапан раньше, когда объем цилиндра все еще увеличивался, потому что дополнительное расширение после закрытия впускного клапана могло еще больше охладить впускной заряд. Он назвал это «внутренним охлаждением» [3520] .На рис. 1 показана стратегия EIVC Миллера для форсированного дизельного двигателя по патенту 1954 года. Обратите внимание, что изменение момента закрытия впускного клапана требовалось при нагрузке от 50 до 100%. Современные подходы к проектированию двигателя, называемые использованием цикла Миллера, обычно усилены и включают как раннее [1912] , так и позднее закрытие впускных клапанов [1919] .
Иногда двигатели с поздним закрытием впускных клапанов называют двигателями цикла Аткинсона . Некоторые предпочитают ограничивать упоминание двигателей с циклом Аткинсона, поскольку они являются безнаддувными и имеют позднее закрывающийся впускной клапан.Однако оригинальные патенты Джеймса Аткинсона относятся не к моменту закрытия клапана, а к двигателю, в котором один цикл двигателя завершается за один оборот коленчатого вала, и с механизмом коленчатого вала, который допускал более высокую степень расширения, чем степень сжатия. Управление моментом закрытия впускного клапана для достижения этого эффекта не упоминается [1915] [1916] .
В то время как Аткинсон заслуживает похвалы за то, что он, возможно, первым признал преимущества наличия различных степеней сжатия и расширения, Миллера следует отдать должное за разработку рецепта для достижения набора целей, который остается актуальным даже для современных двигателей внутреннего сгорания.Таким образом, было бы оправданно ссылаться на проявления чрезмерно расширенных циклов, которые полагаются на переменных моментов закрытия впускных клапанов для их реализации в качестве двигателей с циклом Миллера — независимо от того, используют ли они принудительную индукцию или нет, и независимо от того, являются ли они воспламенением от сжатия или искровым зажиганием. . Идеи Миллера были успешно применены в коммерческих целях, в то время как механизм Аткинсона нашел очень ограниченное коммерческое применение.
Однако широко распространено игнорирование исторического контекста, и как Аткинсону, так и Миллеру часто приписывают современную реализацию чрезмерно расширенных циклов с использованием времени IVC.Называть некоторые из них двигателями цикла Аткинсона совершенно произвольно. Примером такого произвольного подхода является терминология, используемая Агентством по охране окружающей среды США, которое считает цикл Аткинсона чрезмерно расширенным циклом, применяемым к безнаддувным двигателям с EIVC или LIVC, а цикл Миллера — циклом Аткинсона (т. Е. EIVC). или LIVC) с турбонаддувом или нагнетателем [3476] .
Коммерческие приложения
Интерес к применению идей Ральфа Миллера возрос в 1980-х, когда в 1990-х появился ряд коммерческих приложений.Mazda 2.3 L KJ-ZEM, представленная в 1993 году, была ранней бензиновой версией для легковых автомобилей [2823] . Кроме того, в конце 1990-х годов компания Niigata Power произвела среднеоборотный дизельный двигатель 32FX [2586] . Другим приложением, привлекшим внимание примерно в это время, были большие стационарные газовые двигатели [3510] . Многие из этих ранних приложений были мотивированы потенциалом увеличения удельной мощности и эффективности. Надежное оборудование для изменения фаз газораспределения еще не было доступно (или, возможно, даже не было необходимости) для многих из этих приложений, и они полагались на фиксированные EIVC или LIVC.
Интерес к применению цикла Миллера для снижения выбросов NOx из дизельных двигателей возник в 1990-х годах для некоторых судовых двигателей IMO Tier 1. Некоторые из этих двигателей могут использовать относительно мягкий «эффект Миллера» и, следовательно, могут делать это с фиксированными фазами газораспределения [2586] . Дальнейшее сокращение NOx потребует более агрессивного эффекта Миллера и, следовательно, изменения момента закрытия впускного клапана для решения проблем с низкой нагрузкой и запуском двигателя. Некоторыми из первых двигателей для этого были двигатели Caterpillar 2004 года для дорожных двигателей C11, C13 и C15.Кроме того, среднеоборотные судовые двигатели применяют аналогичный подход к ограничениям выбросов NOx стандарта IMO Tier 2, которые вступили в силу в 2010 году.
В бензиновых двигателях легковых автомобилей преимущества эффективности стратегии LIVC были привлекательными для двигателей в гибридных транспортных средствах. Toyota Prius 1 st поколения переняла это в 1997 году. Последующие поколения Prius продолжали использовать эту технологию. В 2007 году Mazda представила безнаддувный двигатель SI, MZR 1,3 л, для японского рынка с фиксированным LIVC и для негибридных автомобилей.Примерно с 2012 года стремление к дальнейшему снижению расхода топлива привело к более широкому применению LIVC в негибридных легковых бензиновых двигателях. Для этих приложений, многие из которых уже имели фазовращатели, включение цикла Миллера было относительно недорогой мерой. Дизельные двигатели малой мощности не спешили внедрять идеи Миллера — возможно, из-за дополнительных затрат. Многие дизельные двигатели малой мощности не используют фазовращатели.
###
Honda Civic Si — Трансмиссия
Впервые в истории Civic Si на Civic Si Coupe и Si Sedan установлен усовершенствованный двигатель с турбонаддувом.Усовершенствованная версия 1,5-литрового 16-клапанного силового агрегата с прямым впрыском DOHC с турбонаддувом, который используется в двигателях EX-T, EX-L и Touring Civics, новый двигатель Si повышает производительность во многих отношениях. Он рассчитан на 205 л.с. при 5700 об / мин и предлагает впечатляющие 192 фунт-фут. крутящего момента между 2100 и 5000 об / мин. Это увеличение на 31 л.с. и 25 фунт-фут. крутящего момента, по сравнению с другими 1,5-литровыми моделями Civic с турбонаддувом.
Новый Si также знаменует собой смелый сдвиг в стратегии по сравнению с предыдущим поколением Civic Si 2015 года.Благодаря уменьшению рабочего объема на 36 процентов по сравнению с атмосферным 2,4-литровым двигателем, который устанавливал предыдущий Si, новый 1,5-литровый двигатель стал легче, компактнее и эффективнее. С помощью сложной системы турбонаддува с электронным управлением и промежуточным охлаждением новый Si предлагает те же пиковые 205 лошадиных сил, что и его предшественник, но на более низких, гораздо более доступных оборотах. Что еще более важно, новый двигатель с турбонаддувом предлагает решающее преимущество в максимальном крутящем моменте в гораздо более широком диапазоне оборотов.В результате получилась очень отзывчивая трансмиссия, которая продвигает миссию Si по увлекательности вождения.
Конечно, кое-что в новом Si не изменилось. Он по-прежнему предлагается исключительно с 6-ступенчатой механической коробкой передач для максимального контроля водителя и тактильной связи, хотя совершенно новая коробка передач предлагает плавное переключение и измененные передаточные числа, чтобы соответствовать мощности нового двигателя с турбонаддувом. И, чтобы помочь довести мощность до земли, как и раньше, в стандартную комплектацию входит винтовой передний дифференциал повышенного трения.
Двигатель Civic Si соответствует требованиям по выбросам EPA Tier3 / Bin125 и CARB LEV 3 / ULEV125. Новый, более эффективный двигатель и трансмиссия, наряду с улучшенной аэродинамикой и значительным снижением сопротивления движению, приводят к значительному увеличению производительности и топливной экономичности по сравнению с 2,4-литровым Civic Si предыдущего поколения (2015 г.). Рейтинги EPA по экономии топлива 1 выросли по всем направлениям:
- +6 миль на галлон Городской (+ 27%)
- +7 миль на галлон по шоссе (+ 23%)
- +7 миль на галлон в смешанном цикле (+ 28%)
Основные характеристики и характеристики трансмиссии
С турбонаддувом 1.5-литровый рядный четырехцилиндровый двигатель с прямым впрыском DOHC *
- Двойная переменная синхронизация (VTC)
- Низкоинерционный турбонагнетатель Mono Scroll с электронным перепускным клапаном *
- Прямой впрыск (DI) с компьютерным управлением с топливными форсунками с несколькими отверстиями *
- Степень сжатия 10,3: 1
- Легкий стальной коленчатый вал высокой жесткости
- Дроссельная заслонка Drive-by-Wire Система
- Maintenance Minder ™ оптимизирует интервалы обслуживания
- Интервал между настройками на 100000 +/- миль
- 205 лошадиных сил при 5700 об / мин (чистая SAE)
- 192 фунт-фут.крутящий момент при 2100-5000 об / мин (сеть SAE)
- Неэтилированное рекомендованное топливо высшего качества
Рейтинг выбросов / экономии топлива
- Соответствует стандартам EPA Tier3 / Bin125 и CARB LEV 3 / ULEV125 по выбросам
- Рейтинги экономии топлива Агентства по охране окружающей среды США (город / шоссе / комбинированный режим)
Трансмиссия / трансмиссия
- 6-ступенчатая МКПП
- Цилиндрический дифференциал повышенного трения
- * Первый для Civic Si
Архитектура и характеристики двигателя
С турбонаддувом 1.5-литровый рядный 4-цилиндровый
Новый 1,5-литровый двигатель DOHC Civic Si является первым двигателем с турбонаддувом, который когда-либо предлагался в модели Si. Тесно связанный с 1,5-литровым двигателем с турбонаддувом, доступным в Civic EX-T Coupe и Sedan 2017 года, силовая установка Si существенно модернизирована, чтобы обеспечить увеличение мощности на 31 л.с. и 25 фунт-фут. крутящего момента. С непосредственным впрыском, малоинерционной высокопроизводительной турбонаддувом с турбонаддувом, электрическим перепускным клапаном и двойным регулируемым клапаном времени (VTC) силовая установка Civic Si с турбонаддувом развивает мощность и крутящий момент гораздо более мощного двигателя.
1,5-литровый двигатель с турбонаддувом и интеркулер
По сравнению со значительно более мощным 2,4-литровым двигателем без наддува, который был стандартным для Civic Si предыдущего поколения (модельный год 2015), двигатель Si 2017 года развивает такую же пиковую мощность (205 л.с.), но при гораздо меньшей и более доступной об / мин (5700 об / мин против 7000 об / мин). Новый Si также развивает 18 фунт-фут. более высокий пиковый крутящий момент (192) и обеспечивает его в гораздо большем диапазоне оборотов двигателя. В новом Si максимальный крутящий момент достигается всего при 2100 об / мин, что составляет менее половины частоты вращения двигателя (4400 об / мин) по сравнению с предыдущим поколением 2.4-х литровый двигатель.
Специально разработанная для прямого впрыска и турбонаддува, силовая установка Si обеспечивает очень высокий выходной крутящий момент от 2100 до 5000 об / мин, что позволяет добиться максимальной отзывчивости и ускорения без необходимости в высоких оборотах двигателя. Высоко доступная подача мощности Si — ключевая особенность его мгновенной подачи мощности и удовольствия от вождения.
1,5-литровый двигатель Si с турбонаддувом разработан для работы на неэтилированном топливе высшего качества и имеет мощность 205 лошадиных сил при 5700 об / мин и вес 192 фунта.крутящий момент в диапазоне от 2100 до 5000 об / мин (чистая SAE). Civic Si оценивается EPA в 28/38/32 миль на галлон 1 .
Блок цилиндров и коленчатый вал
Новый 1,5-литровый рядный четырехцилиндровый двигатель Civic Si имеет легкий литой под давлением алюминиевый блок с отдельными усиленными крышками коренных подшипников для минимизации веса. Гильзы цилиндров из чугуна обеспечивают длительный срок службы. Каждая шейка коленчатого вала из легкой кованой стали подвергнута микрополировке для уменьшения внутреннего трения.
Поршни и шатуны
Поршни 1,5-литрового двигателя помогают поддерживать стабильное сгорание и способствуют повышению эффективности за счет «полых» коронок. Легкие поршни имеют тщательно оптимизированную конструкцию юбки, чтобы свести к минимуму возвратно-поступательный вес, что минимизирует вибрацию и повышает эффективность работы. Поршни охлаждаются сдвоенными масляными форсунками, направленными на нижнюю часть днища каждого поршня. Охлаждающий канал, расположенный по окружности каждого поршня, помогает обеспечить превосходную термостойкость.Поршневые кольца с ионным покрытием помогают снизить трение и повысить эффективность работы. Легкие, высокопрочные стальные шатуны выковываются в виде одной детали путем термической ковки, а затем «разделяются трещины», чтобы создать более легкий и прочный стержень с оптимально подогнанной крышкой подшипника.
Головка блока цилиндров и клапанный механизм
Четырехцилиндровый двигатель Civic Si с турбонаддувом с прямым впрыском топлива имеет облегченную головку блока цилиндров DOHC, изготовленную из литого под давлением алюминиевого сплава. Выпускной канал, залитый непосредственно в головку блока цилиндров, исключает необходимость в традиционном отдельном выпускном коллекторе.По сравнению с другими 1,5-литровыми двигателями Civic с турбонаддувом, которые имеют степень сжатия 10,6: 1, Civic Si имеет пониженное соотношение 10,3: 1, что позволяет ему надежно работать при более высоком максимальном давлении наддува 20,3 фунтов на квадратный дюйм (16,5 фунтов на квадратный дюйм на Civic EX. -Т).
Бесшумная цепь с низким коэффициентом трения приводит в движение два верхних кулачка и четыре клапана на цилиндр. Кулачковый привод не требует обслуживания в течение всего срока службы двигателя. Для дальнейшего снижения веса используются полые тонкостенные распределительные валы.
Для повышения топливной экономичности, выбросов и мощности в турбодвигателе используются выхлопные клапаны, заполненные натрием.Полая камера внутри клапана содержит натрий, который охлаждается охлаждающей рубашкой выхлопного отверстия. Когда камера приближается к головке клапана, натрий помогает охладить весь клапан. Поскольку клапан имеет внутреннее охлаждение, ему не нужна обогащенная топливная смесь, которая обычно использовалась в турбодвигателях для охлаждения выпускного клапана. Полученная более бедная смесь снижает выбросы, увеличивает топливную экономичность и помогает увеличить мощность.
В головке блока цилиндров установлены свечи зажигания M12 меньшего размера, по сравнению с более распространенными M14, для экономии места и веса.Головка также включает многоотверстные топливные форсунки с непосредственным впрыском и малым диаметром отверстия. Прямой впрыск под более высоким давлением оптимизирует распыление топлива, обеспечивая более эффективное сгорание. Для обеспечения всасываемого заряда с высокой скоростью вращения, дополнительно повышающего эффективность сгорания, и впускной канал, и головка поршня имеют особую конструкцию.
Двигатель Civic Si с турбонаддувом оснащен системой регулирования фаз газораспределения (VTC), которая может независимо изменять синхронизацию впускных и выпускных распредвалов.Благодаря изменяемой фазе газораспределения двигателя с турбонаддувом синхронизация кулачка может быть оптимизирована в соответствии с условиями движения. При малых нагрузках перекрытие клапанов может быть увеличено для снижения насосных потерь и повышения топливной экономичности. Когда частота вращения двигателя низкая, а нагрузка двигателя велика, например, при начальном ускорении, степень перекрытия увеличивается, чтобы усилить эффект продувки, что улучшает крутящий момент и отзывчивость. Когда частота вращения двигателя высока и нагрузка на двигатель также высока, например, во время разгона с полностью открытой дроссельной заслонкой, степень перекрытия клапанов уменьшается, чтобы увеличить мощность двигателя за счет улучшения как впуска, так и продувки.
Система прямого впрыска
Система прямого впрыска позволяет увеличить крутящий момент во всем рабочем диапазоне двигателя наряду с более высокой топливной экономичностью. Система оснащена компактным насосом с прямым впрыском под высоким давлением, который обеспечивает высокий расход топлива и подавление пульсаций, а регулируемое регулирование давления оптимизирует работу инжектора. Форсунка с несколькими отверстиями подает топливо непосредственно в каждый цилиндр (а не во впускной канал, как в традиционных конструкциях с впрыском топлива), что обеспечивает более эффективное сгорание.
Форсунки с несколькими отверстиями могут создавать идеальную стехиометрическую топливно-воздушную смесь в цилиндрах для хорошего контроля выбросов. Теоретически в стехиометрической смеси достаточно воздуха, чтобы полностью сжечь имеющееся топливо. В зависимости от условий эксплуатации система прямого впрыска меняет свою функцию для достижения наилучших характеристик. При запуске холодного двигателя топливо впрыскивается в цилиндры на такте сжатия. Это создает эффект слабого расслоения заряда, который улучшает запуск двигателя и снижает выбросы выхлопных газов до достижения нормальной рабочей температуры.
Когда двигатель полностью прогрет, топливо впрыскивается во время такта впуска для максимальной мощности и топливной экономичности. Это помогает создать более однородную топливно-воздушную смесь в цилиндре, чему способствует конструкция впускного канала с высоким перекосом. Это улучшает объемный КПД, а охлаждающий эффект поступающего топлива улучшает антидетонационные характеристики.
Низкоинерционная моноспиральная турбонагнетатель с большим расходом и электронным перепускным клапаном
Турбокомпрессор Civic Si отмечен «горячим» и «холодным» путями воздушного потока
В двигателе Civic Si с турбонаддувом используется уникальный высокопроизводительный турбонагнетатель, обеспечивающий максимальную скорость отклика.Конструкция корпуса Mono scroll помогает увеличить турбонаддув даже при относительно небольших открытиях дроссельной заслонки и низких оборотах. Перепускная заслонка с электрическим приводом позволяет точно контролировать давление наддува. Благодаря более низкой степени сжатия максимальное давление наддува Civic Si было увеличено до 20,3 фунтов на квадратный дюйм (с 16,5 фунтов на квадратный дюйм в Civic EX-T), что существенно увеличило максимальную мощность и крутящий момент.
Большой интеркулер с низким ограничением воздушного потока расположен низко в передней части автомобиля, где он получает беспрепятственный поток воздуха, когда автомобиль находится в движении.Всасываемый воздух проходит от воздушного фильтра к турбокомпрессору, затем к промежуточному охладителю, а затем к впускным отверстиям двигателя. Интеркулер помогает снизить температуру воздуха, поступающего в двигатель, делая его более плотным и повышающим производительность. Для уменьшения веса турбо-система снабжена жесткими, легкими впускными трубами из полимерного композитного материала, по которым всасываемый воздух поступает в промежуточный охладитель и выходит из него.
Технология снижения трения
В двигателе Civic Si используются технологии снижения трения, разработанные для повышения эффективности двигателя.Наружные юбки легких алюминиевых поршней имеют покрытие с низким коэффициентом трения, нанесенное уникальным узором. В результате снижается общее трение при движении поршней в отверстиях цилиндров. Плато-хонингование дополнительно снижает уровень трения между поршнями и цилиндрами, создавая сверхгладкую поверхность. Плато-хонингование — это двухэтапный процесс обработки, в котором используются два процесса шлифования вместо более обычного процесса одиночного хонингования. Это также улучшает характеристики долговременного износа двигателя.Масло с низкой вязкостью (0W-20) также снижает трение. Другими факторами, способствующими повышению общей эффективности работы, являются специальный двухступенчатый предохранительный клапан масляного насоса, масляные уплотнения с низким коэффициентом трения, специальная конструкция поршневых колец с низким сопротивлением, кулачковая цепь с низким коэффициентом трения и легкий коленчатый вал.
Система дроссельной заслонки Drive-by-Wire
Система дроссельной заслонки Drive-by-Wire Civic Si заменяет обычный трос дроссельной заслонки на интеллектуальную электронику, которая «соединяет» педаль акселератора с дроссельной заслонкой внутри корпуса дроссельной заслонки.Результат — меньше беспорядка под капотом и меньший вес, а также более быстрое и точное срабатывание дроссельной заслонки. Кроме того, специально запрограммированный коэффициент усиления между педалью дроссельной заслонки и двигателем обеспечивает улучшенную управляемость и оптимизированный отклик двигателя в соответствии с конкретными условиями движения.
Honda Drive-by-Wire оценивает текущие условия движения, отслеживая положение педали газа, положение дроссельной заслонки, частоту вращения двигателя (об / мин) и скорость движения. Эта информация используется для определения чувствительности управления дроссельной заслонкой, которая придает педали газа Civic Si предсказуемое и отзывчивое ощущение, соответствующее ожиданиям водителя.
С селектором режима движения Civic Si, расположенным на центральной консоли, водитель может выбирать между НОРМАЛЬНЫМ и СПОРТИВНЫМ режимами. В режиме SPORT система дроссельной заслонки Si Drive-by-Wire имеет более агрессивный профиль, ориентированный на динамичное вождение.
Контроль выбросов
Двигатель Civic Si соответствует жестким стандартам выбросов EPA Tier3 / Bin125 и CARB LEV 3 / ULEV125 и сертифицирован для этого уровня выбросов на пробеге 150 000 миль.
100 000 +/- миль Интервалы настройки
Силовая установка Civic Si не требует планового обслуживания на 100 000 +/- миль или более, кроме периодических проверок и нормальной замены жидкости и фильтров. Первая настройка включает проверку водяного насоса, регулировку клапана и установку новых свечей зажигания.
Система Maintenance Minder ™
Для исключения ненужных остановок обслуживания и обеспечения надлежащего обслуживания автомобиля в Civic Si есть система Maintenance Minder ™, которая постоянно контролирует рабочее состояние автомобиля.Когда требуется техническое обслуживание, водитель получает предупреждение с помощью сообщения на информационном интерфейсе водителя (DII). (См. Дополнительную информацию в разделе «Интерьер».)
6-ступенчатая механическая коробка передач
В соответствии с традициями водителей-энтузиастов Si, доступна только одна трансмиссия — 6-ступенчатая механическая коробка передач с быстрым переключением (6MT). Устройство обеспечивает плавное и точное переключение передач и высокую эффективность. По сравнению с тесно связанной 6-ступенчатой механической коробкой передач, предлагаемой в Civic EX-T, трансмиссия Si имеет более жесткие кронштейны, чтобы соответствовать более высокой мощности и крутящему моменту двигателя.Усовершенствования рычага переключения передач и механизма селектора обеспечивают точное и плавное переключение рычага переключения передач при уменьшении хода на 10 процентов.
6-ступенчатая механическая трансмиссия Civic 10-го поколения была тщательно спроектирована для обеспечения современных характеристик и переключения передач с уменьшенным внутренним трением, более жесткими внутренними допусками и улучшенными синхронизаторами. Трансмиссия также имеет более жесткий алюминиевый внешний корпус, шарикоподшипники большей грузоподъемности, более жесткие валы шестерен и более высокий крутящий момент по сравнению с предыдущей трансмиссией Civic Si.Винтовой механизм заднего хода с постоянным зацеплением значительно снижает уровень шума при выборе заднего хода. Функция блокировки заднего хода предотвращает случайное переключение трансмиссии на задний ход при движении автомобиля вперед.
Сравнение передаточного числа механической коробки передач
Передаточное число (X: 1) | 2015 Civic Si | 2017 Civic EX-T | 2017 Civic Si |
1-я | 3,267 | 3.643 | 3.643 |
2-я | 2,040 | 2,080 | 2.080 |
3-я | 1.429 | 1,361 | 1,361 |
4-я | 1,073 | 1.024 | 1.024 |
5-я | 0.830 | 0,830 | 0,830 |
6-я | 0,647 | 0,686 | 0,686 |
Реверс | 3,583 | 3.673 | 3.673 |
Окончательное передаточное число | 4,760 | 4,105 | 4,105 |
Сравнение характеристик трансмиссии
Элемент | 2015 Civic Si | 2017 Civic EX-T | 2017 Civic Si |
Тип двигателя | Л-4 | L-4 с турбонаддувом | L-4 с турбонаддувом |
Рабочий объем (куб. См) | 2354 | 1498 | 1498 |
л.с. при об / мин (сеть SAE) | 205 @ 7000 | 174 @ 5500 | 205 @ 5700 |
Крутящий момент (фунт-фут при об / мин, чистая по SAE) | 174 @ 4400 | 167 @ 1800-5500 | 192 @ 2100-5000 |
Диаметр цилиндра и ход поршня (мм) | 87.0 х 99,0 | 73 х 89,5 | 73 х 89,5 |
Степень сжатия | 11,0: 1 | 10,6: 1 | 10,3: 1 |
Максимальное давление наддува (фунт / кв. Дюйм) | – | 16.5 | 20,3 |
Впрыск топлива | Порт | Прямой | Прямой |
Программируемый впрыск топлива (PGM-FI) | • | – | – |
Клапанный | 16-клапанный DOHC i-VTEC® | 16-клапанный DOHC | 16-клапанный DOHC |
Электропроводная система дроссельной заслонки | • | • | • |
Малоинерционный турбокомпрессор MONO | • | • | |
Регулируемый подъем впускного клапана | • | – | – |
Регулируемый кулачок впускного / выпускного клапанов | • | • | • |
Трансмиссия | 6МТ | вариатор / 6МТ | 6МТ |
Цилиндрический дифференциал повышенного трения | • | – | • |
Привод передних колес | • | • | • |
100 тыс. +/- миль Без плановой настройки | • | • | • |
Показатели экономии топлива и выбросов
Рейтинги | 2015 Civic Si | 2017 Civic EX-T 1,5 л с турбонаддувом | 2017 Civic Si |
Рейтинги экономии топлива EPA 1 | 22/31/25 (6 месяцев) | 31/42/35 (6МТ) | 28/38/32 (6МТ) |
Рекомендуемое топливо | Премиум неэтилированный | Обычный неэтилированный | Премиум неэтилированный |
Рейтинг выбросов CARB | УЛЕВ-2 | ЛЕВ3-УЛЕВ125 / | ЛЕВ3-УЛЕВ125 |
(все данные см. В разделе «Технические характеристики и функции».)
1 На основе рейтингов EPA по экономии топлива 2017 года. Используйте только для сравнения. Ваш пробег будет варьироваться в зависимости от того, как вы водите и обслуживаете свой автомобиль, условий вождения и других факторов.
.