Технические характеристики моторных масел: свойства, вязкость
Характеристики моторных масел регламентируют стандарты международного уровня.
Вязкость моторного масла
Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:
- кинематическая вязкость показывает способность материала сопротивляться течению под действием силы тяжести. Измеряется в стоксах (Ст) или в квадратных миллиметрах в секунду (мм2/с). Чаще всего характеристику определяют для температур 40 и 100 °С;
- динамическая вязкость определяет отношение силы к скорости сдвига. Характеристика показывает способность моторного масла к течению при разных температурах, измеряется в сантипуазах (Сп) или в (Н·с/см2).
Индекс вязкости
Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.
Температура застывания
Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.
Температура вспышки
Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.
Щелочное число (Total Base Number, TBN)
Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала. Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.
Зольность
Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию. Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.
Стандарты и спецификации
SAE J300
Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.
Классы вязкости зимних моторных масел SAE J300
|
Низкотемпературная вязкость |
Высокотемпературная вязкость |
|||
Класс вязкости SAE |
CCS, МПа-с. Max, при темп.,°С |
MRV, МПа-с, Max, при темп.,°С |
Кинематическая вязкость, мм2/с при 100 °С |
HTHS, МПа-с. Min при 150 °С и 10Л6 с-1, |
|
|
|
|
Min |
Max |
|
0W |
3250 при -30 |
30000 при -35 |
3,8 |
— |
— |
5W |
3500 при -25 |
30000 при -30 |
3,8 |
— |
— |
10W |
3500 при -20 |
30000 при -25 |
4,1 |
— |
— |
15W |
3500 при -15 |
30000 при -20 |
5,6 |
— |
— |
20W |
4500 при -10 |
30000 при -15 |
5,6 |
— |
— |
25W |
6000 при -5 |
30000 при -10 |
9,3 |
— |
— |
Классы вязкости летних моторных масел SAE J300
Класс вязкости SAE |
Высокотемпературная вязкость |
||
Кинематическая вязкость, мм2/с при 100 °С |
HTHS, МПа-с. Min при 150 °С и 10Л6 с-1, |
||
Min |
Max |
||
8 |
4,0 |
6,1 |
1,7 |
12 |
5,0 |
7,1 |
2,0 |
16 |
6,1 |
8,2 |
2,3 |
20 |
6,9 |
9,3 |
2,6 |
30 |
9,3 |
12,5 |
2,9 |
40 |
12,5 |
16,3 |
2,9* |
40 |
12,5 |
16,3 |
3,7** |
50 |
16,3 |
21,9 |
3,7 |
60 |
21,9 |
26,1 |
3,7 |
* Для классов 10W40, 5W40, 10W40. ** Для классов 15W40, 20W40, 25W40, 40. |
API
Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:
- S – Service (spark ignition). Категория включает масла для бензиновых двигателей легковых автомобилей;
- C – Commercial (compression ignition). В нее включена продукция для дизельных двигателей;
- EC – Energy Conserving. Категория описывает энергосберегающие масла.
Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.
ILSAC
Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:
GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;
GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;
GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;
GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;
GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.
Знание основных характеристик необходимо для грамотного выбора моторного масла.
Характеристики масел
Классификация моторных масел по API.
Система классификации моторных масел API (American Petroleum Institute — Американский Институт Нефти) была создана в 1969 году и была призвана классифицировать масла по уровню чистоты и качества, а также по возможности применения в двигателях внутреннего сгорания.Помимо всего прочего, система классификации API четко разделяет масла по применяемости на масла для бензиновых и для дизельных двигателей. Для разных типов двигателей система API предусматривает свои классы качества, которые описывают необходимый набор качеств и эксплуатационных свойств смазочного материала.
Маркировка API на этикетке канистры выглядит следующим образом:
API SL/CF или API SL, API CF Если на упаковке нет информации о классе по API, это говорит о том, что масло вообще не проходило сертификацию API.
Как расшифровать маркировку API.
Итак, что же обозначают буквы и цифры в системе классификации масел по API? Первая буква маркировки обозначает принадлежность моторного масла к типу двигателя:«S» — Масла для бензиновых двигателей.
«C» — Масла для дизельных двигателей.
Например, маркировка API SL — обозначает, что масло применимо в бензиновых двигателях, а API CF — масло применимо в дизельных двигателях.
Большинство современных масел универсальны и могут применяться как в бензиновых, так и в дизельных двигателях. В таком случае маркировка API , будет двойной. На этикетке она выглядит следующим образом:
API SL/CF или API SL, API CF
С применимостью масел по типу двигателя все понятно, далее разберемся, что обозначает вторая буква в системе классификации API.
Ниже приведены таблицы с допусками по системе классификации API для бензиновых и дизельных двигателей.
Бензиновые двигатели | |
Индекс API | Применяемость |
SA | Устаревший класс. Масла без присадок |
SB | Устаревший класс. Автомобили 1930-х годов. |
SC | Устаревший класс. Автомобили 1964-1967 годов. |
SD | Устаревший класс. Автомобили 1968-1971 годов. |
SE | Устаревший класс. Автомобили 1972-1979 годов. |
SF | Устаревший класс. Автомобили 1980-1988 годов. |
SG | Автомобили 1989-1991 годов. |
SH | Автомобили 1992-1995 годов. |
SJ | Автомобили 1996-1999 годов. |
SL | Автомобили 2000-2003 годов. |
SM | Автомобили с 2004 г. и по настоящее время. |
Дизельные двигатели | |
Индекс API | Применяемость |
СA | Устаревший класс. Автомобили с 1940 года. |
СB | Устаревший класс. Автомобили с 1949 года. |
СC | Устаревший класс. Автомобили с 1961 года. |
СD | Устаревший класс. Автомобили с 1955 года. |
CD-II | Устаревший класс. Автомобили с 1985 года. |
CE | Устаревший класс. Автомобили с 1983 года. |
CF | Автомобили 1990 года. |
CF-II | Автомобили 1994 года. Двухтактные. |
CF-IV | Автомобили 1990 года. Четырехтактные. |
CG-IV | Автомобили 1995 года. Четырехтактные. |
CH-IV | Автомобили 1998 года. Четырехтактные. |
CI-IV | Автомобили 2002 года. Четырехтактные. |
Более новые допуски API заменяют ранее принятые. То есть допуск API CF заменяет более старый API CC, равно как и API SM заменяет API SL.
ВАЖНО! При выборе моторного масла необходимо в первую очередь руководствоваться рекомендациями производителя техники!
Классификация моторных масел по SAE.
Наиболее важным показателем, который характеризует автомобильное масло, является его вязкость. На упаковке абсолютно любого моторного масла мы видим маркировку SAE 5w-40, 10w-40 и так далее… Что же она обозначает? Сейчас мы в этом разберемся.Вязкость масла — это его способность оставаться на внутренних деталях двигателя, при этом сохраняя текучесть и способность выполнять свои основные функции (смазка, защита, очистка).
Обозначение индекса вязкости на упаковке.
Маркировка, которую мы видим на упаковке, как раз и отражает способность смазочного материала выполнять свои функции при разных температурных режимах. Вот тут то как правило и рождается масса мифов и заблуждений, которые мы постараемся развеять.Ниже представлена таблица, в которой индексы SAE приведены в соответствие с температурой окружающей среды.
Дело в том, что индекс вязкости не отражает температуру, при которой каждое конкретное автомобильное масло может эксплуатироваться. Температурный режим, обозначенный маркировкой важен только в момент пуска двигателя.
Иными словами — Индекс SAE отражает способность масла сохранять необходимую вязкость при определенных температурах, для того, чтобы масляный насос Вашего двигателя, в момент запуска, смог это самое масло прокачать ко всем точкам смазки силового агрегата.
Рассмотрим простой пример.
Моторное масло с индексом SAE 5w-40. Маркировка нам говорит о том, что запуск двигателя в диапазоне температур от -30 до +35 градусов по Цельсию возможен, и моторное масло поступит к точкам смазки, тем самым не допустив сухого трения внутренних деталей.
Возникает закономерный вопрос — почему спортивные масла имеют маркировку с высоким летним индексом, например SAE 5w-50 или SAE 10w-60?
Масла с такими индексами вязкости появились относительно недавно, и связано это в первую очередь с развитием и техническим совершенствованием двигателей автомобилей. Как можно охарактеризовать условия эксплуатации современного двигателя в спортивном автомобиле:
- Высокие нагрузки
- Высокие обороты
- Высокие температуры
Никакой дополнительной мощности спортивное масло дать не способно, оно разработано для того, чтобы эффективно работать в высокофорсированном спортивном двигателе не допуская чрезмерного износа.
ВАЖНО! При выборе моторного масла необходимо в первую очередь руководствоваться рекомендациями производителя техники!
Классификация SAE трансмиссионных масел по вязкости
Международная классификация по вязкости SAE делит масла на 7 классов: 4 — с индексом W (Winter) — зимних и 3-летних. Если масло всесезонное, у него двойная маркировка, например, SAE 80W-90, SAE 75W-90 и т.д.Класс вязкости | Минимальная температура достижения динамической вязкости 150 мПа • с, °С | Кинематическая вязкость при 100°С, мм2/с | |
не менее | не более | ||
Зимние | |||
70W | -55 | 4,1 | - |
75W | -40 | 4,1 | - |
80W | -26 | 7 | - |
85W | -12 | 11 | - |
Летние | |||
90 | - | 13,5 | 24 |
140 | - | 24 | 41 |
250 | - | 41 | - |
Для легковых автомобилей используются масла только групп GL-4 и GL-5. Масла группы GL-4 предназначены для обычных «ручных» коробок передач и редукторов со спирально-коническими или гипоидными главными парами при умеренных условиях эксплуатации. Масла группы GL-5 пригодны как для умеренных, так и для жестких условий эксплуатации в редукторах с гипоидными и другими видами передач.
Их также можно применять в обычных коробках передач.
Классификация API трансмиссионных масел по уровню эксплуатационных
Классификация по эксплуатационным свойствам API предусматривает деление масел на 6 групп в зависимости от области применения, которая определяется типом зубчатой передачи, удельными контактными нагрузками в зонах зацепления и рабочей температурой.Группа по API | Группа по ГОСТ | Свойства и область применения |
GL-1 | TM-1 | Минеральные масла без присадок или с антиокислительными и противопенными присадками без противозадирных компонентов для применения, среди прочего, в коробках передач с ручным управлением с низкими удельными давлениями и скоростями скольжения. Цилиндрические, червячные и спирально-конические зубчатые передачи, работающие при низких скоростях и нагрузках. |
GL-2 | TM-2 | Червячные передачи, работающие в условиях GL-1 при низких скоростях и нагрузках, но с более высокими требованиями к антифрикционным свойствам. Могут содержать антифрикционный компонент. |
Gl-3 | TM-3 | Трансмиссионные масла с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. Эти масла применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов, пассажиров и для нетранспортных работ. Спирально-конические передачи, работающие в умеренно жестких условиях. Обычные трансмиссии со спирально-коническими шестернями, работающие в умеренно жестких условиях по скоростям и нагрузкам. Обладают лучшими противоизносными свойствами, чем GL-2. |
GL-4 | TM-4 | Трансмиссионные масла с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. Эти масла применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов и пассажиров и для нетранспортных работ. Гипоидные передачи, работающие в условиях высоких скоростей при малых крутящих моментах и малых скоростей при больших крутящих моментах. Обязательно наличие высокоэффективных противозадирных присадок |
GL-5 | TM-5 | Масла для гипоидных передач с уровнем эксплуатационных свойств MIL-L-2105 C/D. Эти масла предпочтительно применяются в передачах с гипоидными коническими зубатыми колесами и коническими колесами с круговыми зубьями для главной передачи в автомобилях и в карданных приводах мотоциклов и ступенчатых коробках передач мотоциклов. Специально для гипоидных передач с высоким смешением оси. Для самых тяжелых условий эксплуатации с ударной и знакопеременной нагрузкой. Гипоидные передачи, работающие в условиях высоких скоростей при малых крутящих моментах и ударных нагрузках на зубья шестерен. Должны иметь большое количество серофосфорсодержащей противозадирной присадки |
GL-6 | TM-6 |
Гипоидные передачи с увеличенным смещением, работающие в условиях высоких скоростей, больших крутящих моментов и ударных нагрузок. Имеют большее количество серофосфорсодержащей противозадирной присадки, чем масла GL-5. |
Группа GL-6 в настоящее время практически не используется. При необходимости область применения группы GL-5 дополняется соответствующей информацией в технической документации на эти масла.
Масла для автоматических коробок передач не подчиняются требованиям API. В связи с тем, что к ним предъявляются особые требования, крупнейшие производители этих коробок разработали отдельные спецификации для автоматических трансмиссионных жидкостей — ATF (Automatic Transmission Fluids).
В настоящее время действуют следующие спецификации:
- для коробок передач производства «Дженерал моторс», Dexron, Dexron II и III и Allison;
- для коробок передач производства «Форд», Мегсоn — V2C 138-CJ или М2С 166Н.
ВАЖНО! При выборе моторного масла необходимо в первую очередь руководствоваться рекомендациями производителя техники!
Выбор масла
Чем в каждом конкретном случае обусловлен выбор того или иного сорта трансмиссионного масла? Прежде всего, разумеется, указаниями заводской инструкции по эксплуатации техники. Использование жидкости более низкой категории по градации API недопустимо, поскольку ведет к выходу агрегата из строя, а более высокой — нецелесообразно в первую очередь по экономическим соображениям (товар следующей группы имеет существенно повышенную цену).Если же специальных указаний нет, то принцип выбора заключается в следующем. Работу тех агрегатов грузовых автомобилей, в которых не гипоидных зацеплений, достаточно надежно обеспечивают масла с уровнем эксплуатационных свойств GL 3, хотя бывают и исключения. Так, популярному легкому грузовику «ГАЗель» требуется масло класса GL 5 не только в задний мост, но и в коробку передач.
Что касается редукторов с гипоидным зацеплением шестерен, то для них во всех случаях пригодно только масло класса GL 5. Это в равной мере относится и к грузовым, и к легковым автомобилям. Смазка более низкой группы не может предохранить зубья гипоидной пары от задиров.
Потребность легковых автомобилей в общем случае такова: масло класса GL 5 — для ведущих мостов, класса GL 4 — для механических коробок передач. При этом следует иметь в виду, что отечественная промышленность масел GL 4 не выпускает, а импортные продукты этого уровня стоят дороже, чем наши GL 5.
Но выбор по уровню эксплуатационных свойств — это еще не все. Надо определяться также и с вязкостью приобретаемого смазочного материала. Здесь применимы следующие рассуждения. Масла, вязкость которых при 100 С не ниже 24 кв.мм/с, т.е. класса «140» по SAE (а уж тем более «250»), предпочтительны лишь для жаркого южного климата. В зоне умеренных температур лучше ориентироваться на класс «90». А коль скоро, как упоминалось выше, рациональнее использовать «всесезонное» масло, то речь может идти о сортах с индексами 75W-90, 80W-90 и 85W-90. Последнее не очень подходит для сколько-нибудь суровой зимы. Масло класса 80W-90 по SAE достаточно универсально, a 75W-90 позволяет не испытывать трудностей даже в пору самых крепких морозов.
Технические характеристики моторных масел 🚗 Свойства масел для двигателей
Содержание:
Важность качественного моторного масла сложно переоценить: правильно подобранная смазочная жидкость необходима, чтобы машина исправно работала, а узлы не изнашивались раньше срока. Чтобы подобрать состав, который будет подходить под конкретные климатические условия, важно разбираться в характеристиках моторных масел. Грамотно выбранные параметры вязкости, зольности, плотности помогут определиться с составом, но главное, конечно, не связываться с недобросовестными производителями и покупать смазочную жидкость только у проверенных компаний.
Функции моторного масла
Основное назначение состава – смазывать двигающиеся детали, чтобы не допускать их трения друг о друга и преждевременного износа. Также масло отводит от механизмов тепло, не дает им перегреваться, а содержащиеся в составе присадки защищают от загрязнений и обладают моющими свойствами. Во многом особенности зависят от состава присадок: разные масла рассчитаны под разные условия, и это еще одна причина, по которой смазочную жидкость нужно подбирать с умом. В расчет берутся три параметра: характеристики самой машины, климатические условия, в которых ее владелец использует авто, и необходимый состав (минеральное, синтетическое или полусинтетическое и т. д.).
Требования к качественному маслу
Могут различаться в зависимости от региона и машины. Но основные требования остаются неизменными:
- нейтральность по отношению к металлу. Иными словами, состав не должен провоцировать коррозию и ускорять разрушение деталей;
- моющие и стабилизирующие свойства, которые в основном достигаются за счет присадок;
- способность функционировать в нужном температурном диапазоне;
- отсутствие пены при работе;
- возможность охлаждать греющиеся детали, то есть хорошие термоокислительные и термические способности;
- совместимость с материалами, из которых делают уплотнительные элементы. Важно, чтобы состав не был чересчур агрессивен к полимерам;
- способность нейтрализовать кислоты и продлевать тем самым срок работоспособности двигателя;
- низкая летучесть, небольшой расход;
- возможность запускать мотор, в том числе из холодного состояния.
На что влияют технические характеристики
В зависимости от того, какими характеристиками и свойствами обладает смесь, можно судить, комфортно ли будет использовать ее в определенных условиях, скажем, зимой или, наоборот, в жаркое время года. Некоторые варианты больше подходят для одних особенностей конструкции, некоторые – для других. Вдобавок стоит смотреть на качество: и синтетическое, и минеральное масла могут хорошо работать, если выпущены грамотными производителями. В случае же, если состав разрабатывался некачественно, итоговых свойств может быть недостаточно для нормальной работы машины. Технические характеристики масла определяют:
- когда им лучше пользоваться – летом, зимой или круглый год;
- для каких двигателей оно подходит – бензиновых или дизельных.
Некоторые классы предназначены для тяжелонагруженных моторов или имеют повышенную совместимость с каталитическими нейтрализаторами.
Что входит в технические характеристики масла
Существует несколько классификаций, определяющих параметры смазочной жидкости. Они касаются особенностей применения, вязкости и типа двигателей, для которых предназначено масло. Однако классификация – отдельный вопрос. Если речь идет именно о характеристиках как о свойствах, выраженных количественно, то к ним обычно относят семь параметров:
- динамическую и кинетическую вязкость;
- температуру застывания;
- температуру вспышки;
- плотность;
- зольность;
- щелочное число.
Они описывают физические и химические свойства конкретного масла: именно на их основе смазочную жидкость относят к тому или иному классу по одной из классификаций.
Вязкость: кинетическая и динамическая
Это показатель, который говорит, насколько хороши смазывающие свойства масла. Более вязкая жидкость лучше смазывает, но хуже подходит для низких температур, потому что быстрее застывает. Более жидкие составы обычно используются на холоде или в условиях, когда масла с высокой вязкостью нельзя применять. Эта характеристика разделяется на две:
- динамическая вязкость описывает поведение масла при холодном моторе, то есть демонстрирует, как оно будет вести себя зимой. Этот показатель даже не всегда указывают в таблицах характеристик, так как он напрямую связан с классом зимней вязкости. Указания класса обычно достаточно;
- кинетическая же вязкость описывает работу масла во время, когда двигатель включен. Рассчитывается, как правило, для температуры в 100 градусов, и чем больше цифра, тем лучше.
Классификация SAE
Этот международный стандарт делит моторные масла на группы в зависимости от их вязкости и температурных пределов, для которых они предназначены. Согласно этой классификации смазочные жидкости бывают трех основных типов:
- летние. Класс обозначается одним числом, чем оно выше, тем гуще масло;
- зимние. Их легко узнать: обозначение – число, после которого указана буква W. Она означает winter – зима. Чем меньше числовое значение, тем более жидким является масло и, соответственно, тем при более низких температурах его можно использовать;
- всесезонные. Обозначаются сдвоенным значением: первое – зимнее, с буквой W, второе – летнее. По соотношению чисел можно определить температурный диапазон, при котором смазочная жидкость будет нормально функционировать.
Индекс вязкости
Это численное значение, которое не говорит о вязкости как таковой: оно обозначает, как сильно она меняется с перепадами температуры. Этот параметр во многом определяет качество масла: в идеале оно должно как можно меньше менять свои свойства, когда меняется температурный режим. В реальности такое недостижимо, но современные синтетические масла достигают значения индекса в 150–180 единиц. Чем выше этот показатель, тем лучше: высокие значения говорят о том, что жидкость не слишком активно изменяется при смене температурного режима и сохраняет свои свойства.
Температура застывания и вспышки
Существуют температурные пределы, при которых масло полностью перестает функционировать. Нижний называется температурой застывания, ее достижение означает, что масло потеряло текучесть и застыло. Де-факто функционировать оно может перестать раньше: еще до застывания текучесть станет настолько низкой, что смазочная жидкость перестанет прокачиваться через фильтр. Обычно это происходит за 5–7 градусов Цельсия до достижения температуры застывания. Грамотные производители учитывают такую возможность при определении класса масла: даже при температурных значениях, близких к минимуму, смесь еще будет прокачиваться. Верхний же предел называется температурой вспышки. Это температурное значение, при котором масла испарится настолько много, что, если рядом окажется источник огня, пары загорятся. Обычно оно выше 200 градусов и недостижимо, если с машиной все в порядке, но показатель позволяет понять скорость испарения масла даже в нормальных условиях. Чем ниже температура вспышки, тем активнее испаряется жидкость.
Плотность
Каждое масло содержит определенное количество летучих фракций. Их объем и определяет плотность – параметр, влияющий на качество работы смазочной жидкости.
- Высокоплотные составы обычно гуще, они снижают механическую нагрузку на узлы, но при слишком высоком значении плотности могут плохо проникать в труднодоступные места цилиндров.
- Масла со слишком низкой плотностью не так хорошо справляются со своей работой, как с оптимальной.
Обычно чем выше температура вспышки, тем выше и плотность, но бывают и исключения – высококачественные синтетические масляные основы. Они могут обладать оптимальными значениями обоих параметров одновременно.
Зольность и щелочное число
Технические характеристики моторного масла описывают не только физический, но и химический его состав, к таким можно отнести показатель сульфатной зольности и щелочное число.
- Зольность иногда считают показателем количества присадок в смазочной жидкости, но в действительности этот параметр не всегда коррелирует с ними. Он показывает, сколько золы остается после испарения масляной основы или ее сгорания. Зола часто содержит в себе сульфаты, которые могут быть вредны для каталитических нейтрализаторов, но в целом показатель зольности критичнее для топлива, чем для масла.
- Щелочное число показывает, какому количеству гидроксида калия эквивалентны присадки в масле, направленные на нейтрализацию кислот. По сути, показатель демонстрирует, как долго смазочная жидкость сможет избегать окисления.
На что обратить внимание при выборе масла
Помимо основных параметров – для бензина или для дизеля предназначен состав, какой пакет присадок в нем используется – нужно обращать внимание на технические характеристики и сопоставлять их с реальными условиями.
Жителям холодных регионов высокая вязкость не принесет пользы, а жарких, наоборот, сослужит хорошую службу. Если Вы хотите, чтобы масло работало дольше, обращайте внимание на показатели зольности и щелочное число. И, конечно, пользуйтесь продуктами проверенных производителей: «Синтек» предлагает качественную и разнообразную продукцию. В нашем ассортименте минеральные, синтетические, полусинтетические масла с разными характеристиками, подходящими под различные условия использования.
Предложение SINTEC
-
SINTEC PLATINUM SAE 5W-40 API SN/CF
Синтетическое масло с высокими эксплуатационными характеристиками, подходящее для всех сезонов и содержащее пакет многофункциональных качественных присадок зарубежных производителей.
-
SINTEC LUX SAE 5W-40 API SL/CF
Универсальный продукт, подходящий и для бензиновых, и для дизельных двигателей. Подходит в том числе грузовикам, машинам отечественного и зарубежного производства.
-
SINTEC EURO SAE 15W-40 API SJ/CF
Пример качественного минерального масла с характеристиками, подходящими для использования в российских условиях, и пониженным расходом.
Характеристики моторных масел – что говорит нам этикетка?
Исправная и надежная работа двигателя зачастую зависит от характеристики моторных масел, которые вы используете в своем четырехколесном друге. Масла делятся на три типа: синтетика, полусинтетика и минеральные варианты. Осталось разобраться, в чем же их отличия?
Способы получения моторной жидкости
Синтетическое происхождение означает то, что за основу взяты химические вещества, которые получены исключительно в лаборатории. Поэтому в данном виде лучше всего подобраны именно те характеристики и параметры, которые будут использоваться во время эксплуатации. Данные варианты отлично подходят к большинству дополнительных присадок, тем самым могут улучшать какие-либо свои характеристики. Основной их плюс – это защитные и очищающие свойства. И они ни в коей мере не теряют своих свойств при высоких температурах.
Дальше рассмотрим следующий тип – полусинтетические масла. Это некая грань между искусственным и натуральным вариантом. Основа у данного типа, как правило, минеральная, но за счет примешивания синтетики компенсируются минусы минерального варианта. По своей консистенции полусинтетика напоминает нам синтетику, да и по свойствам в принципе тоже. Но за счет того, что это не 100 % искусственный состав, такая продукция сильно выигрывает в цене. Стоит полусинтетика значительно дешевле, а по свойствам проигрывает совсем немного.
Несложно догадаться, из чего производят минеральные моторные масла. Принцип получения состоит в перегонке нефти. Из-за своего специфического появления на свет у продукта цена намного ниже, чем у двух вышеперечисленных типов. Но есть ряд минусов. При высоких температурах работать оно не может, так как сильно густеет. Может также вступить в химическую реакцию с воздухом и оставить на двигателе загрязнительные шлаки. Основные сравнительные характеристики автомобильных моторных масел закончены, теперь необходимо перейти к температурной классификации.
Если есть возможность по финансам и техническим параметрам мотора, то используйте синтетическое масло.
Температурные характеристики моторных масел – обозначения
Сейчас большинство масел, которые выпускаются на автомобильном рынке, называются универсальными. Они могут работать как в холод, так и в знойную жару. Стоят они дорого, так как это специально подобранные синтетические варианты. Имеют следующее обозначение на коробке (обычно на центральной части этикетки): W значит, что масло можно использовать в зимнюю пору, а цифра впереди указывает показатель темпаратурной вязкости.
Итак, в итоге имеется следующая градация:
- 0W – используется при сильных морозах до -35-30 градусов по Цельсию;
- 5W – данное масло можно использовать только до -30-25 градусов;
- 10W – этот тип спокойно сможет работать при -25-20 градусах;
- 15W – применяется, если на улице до -20-15 градусов;
- 20W – минимальная температура в этом случае составит -15-10 градусов.
Для масел, которые готовы преодолеть высокие температуры, не ставится букв, а просто указана цифра:
- 30 – до +20-25 градусов;
- 40 – до +35-40 градусов;
- 50 – может выносить жару до 45-50 градусов;
- 60 – хоть в печь засовывай.
Что следует помнить при выборе моторного масла?
При выборе самой частой ошибкой бывает банальная путаница с цифрами, многие уверены, что любое число на этикетке может обозначать максимальную температуру, но это не правильно. Лучше внимательно почитайте характеристики на обороте, времени это займет немного, зато неприятностей впоследствии будет гораздо меньше. Следует иметь в виду при использовании, что чем ниже значение допустимой температуры эксплуатации, тем более жидким будет масло. Ну, а выше были перечислены все температурные характеристики моторных масел.
Теперь давайте подведем итог, при выборе масла необходимо полностью опираться именно на климатические условия, в которых будет эксплуатироваться ваш автомобиль. Вы также сами должны решить, готовы ли вы платить за дорогое масло, или вам проще поменять двигатель через пару лет. Все же раз в 1-2 года купить канистру качественного синтетического продукта для замены не очень ударит по карману. При выборе моторных масел технические характеристики необходимо тщательно изучить!
Характеристики моторных масел
О чем говорят потребителю характеристики моторных масел, расскажем на примере «камазовского» летнего масла М-10Г2к, выпускаемого по ГОСТ 8581–78. Дата выпуска нужна для определения срока годности моторного масла. Для М-10Г2к он равен пяти годам. По истечении этого времени масло можно использовать только после повторной паспортизации, подтверждающей соответствие свойств продукта нормам стандарта после длительного хранения.
ГОСТ 8581–78 устанавливает нормы для марки М-10Г2к по следующим показателям.
Главная характеристика моторного масла — вязкость кинематическая при 100 °C в пределах 10,5–11,5 мм2/с соответствует классу SAE 30 и гарантирует надежное смазывание двигателей при их работе в летнее время года.
Следующий параметр — индекс вязкости не менее 95, плотность при 20 °С не более 0,900 т/ м3, цвет не более 3,0 единиц ЦНТ. Эта характеристика моторного масла характеризуют сырье, из которого изготовлено масло, и глубину очистки масляных фракций нефти. Чем выше индекс вязкости, меньше плотность и лучше цвет, тем благоприятнее состав базового масла и качество конечного продукта, получаемого добавлением присадок к базе.
Массовая доля механических примесей не более 0,015 %, воды (следы), степень чистоты не более 500 мг/100 г. Эти три характеристики моторного масла говорят об отсутствии в масле значительного количества вредных примесей, причем в составе механических примесей не допускается наличие абразивных веществ.
Температура вспышки в открытом тигле не ниже 220 °С характеризует содержание в масле легких фракций. Чем выше эта характеристика, тем меньше испаряемость моторного масла и его расход в двигателе, медленнее рост вязкости в процессе старения.
Еще одна важная характеристика моторного масла — температура застывания не выше –18 °С характеризует ту степень охлаждения моторного масла, при которой оно теряет способность течь. Летнее масло применяют при температуре воздуха не ниже 0 °С и, следовательно, в данном случае есть большой резерв.
Отсутствие коррозионности на пластинах из свинца. Этот показатель характеризует коррозионную агрессивность моторного масла в отношении свинцовистой бронзы, из которой изготавливают вкладыши подшипников коленчатого вала.
Моющие свойства по ПЗВ, баллы, не более 0,5. Этот показатель характеризует эффективность моющих присадок, добавленных к маслу. Оценка 0,5 балла говорит о том, что после испытания поршень практически чист.
Щелочное число не менее 6,0 мг КОН/ г — — характеристика моторного масла, показывающая способность моторного масла нейтрализовать кислоты, образующиеся при сгорании топлива и окислении масла. Чем больше щелочное число, тем лучше, но щелочность масла обусловлена наличием в его составе металлоорганических моющих присадок, образующих при сгорании золу, которая является абразивным материалом и иногда нарушает работу выпускных клапанов.
Сульфатная зольность не более 1,15 % ограничена сравнительно небольшой величиной в связи с тем, что сказано ранее. Новейшие спецификации европейских автопроизводителей ограничивают эту характеристику дизельных масел величиной не более 1,0 % для выполнения требований Еuro 4.
Стабильность по индукционному периоду осадкообразования не менее 50 часов характеризует стойкость масла к окислению. В течение 50 часов при температуре 200 °С и контакте с воздухом масло М-10Г2к не образует нерастворимых продуктов окисления.
Массовая доля активных элементов – кальция не менее 0, 19 %, цинка и фосфора не менее 0,05 % каждого. Эти характеристики моторных масел показывает правильность дозирования моющих, антиокислительных, антикоррозионных и противоизносных присадок при изготовлении масла.
Ряд характеристик моторных масел, имеющихся в паспорте, дает возможность контролировать работоспособность масла и выявлять некоторые неисправности двигателя путем анализа отработанного масла.
Так, например, снижение температуры вспышки на 30 °С и более свидетельствует о значительном разжижении масла топливом из-за утечки из системы подвода топлива или нарушений в работе ТНВД или форсунок.
Повышение массовой доли воды с 0,03 % (следы) до 0,2 % и более указывает на утечку охлаждающей жидкости и/или нарушения работы системы вентиляции картера. При указанном снижении температуры вспышки и увеличении массовой доли воды масло подлежит замене, оно стало неработоспособным.
То же относится еще к двум характеристикам масел. Сжижение щелочного числа более, чем на 50 % исходной величины, и изменение вязкости при 100 °С (снижение или рост) более, чем на 25 %, влекут за собой необходимость смены масла.
Быстрое снижение щелочного числа обычно связано с применением топлива, имеющего повышенное содержание серы. Снижение вязкости сезонного (в данном случае летнего) масла – результат его разжижения топливом. Рост вязкости может быть обусловлен интенсивным окислением при длительной работе с высокой нагрузкой и высокой температуре воздуха, загрязнением масла частицами сажи – продуктами неполного сгорания топлива, а также испарением наиболее легких фракций базового масла.
Сравнительные характеристики моторных масел — «Автоцентр Парус»
Сравнение состава присадок и физико-химических свойств моторного масла Sumico(ALPHA’S) с аналогами других известных производителей.
В предыдущей статье мы ознакомили Вас с результатами лабораторных испытаний моторных масел Sumico(ALPHA’S). Очевидно, что представляет интерес исследование элементного состава присадок и физико-химических свойств моторных масел других известных производителей и сравнение их с моторными маслами Sumico(ALPHA’S).Лабораторные испытания проведены в сертифицированном Испытательном центре ООО «Уральский региональный центр «Технической экспертизы и диагностики».
В таблицах 1 и 2 представлены результаты исследований моторных масел классов вязкости 5W-30, 10W-40 и 5W-40.
Таблица 1. СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ МОТОРНЫХ МАСЕЛ
Наименование показателя | Sumico |
Mazda |
Toyota |
Sumico |
Mazda |
|
5W-30 |
Original |
Motor Oil |
SL/CF-4 |
Dexelia |
||
SN/GF-5 |
Oil Ultra |
5W-30 |
10W-40 |
10W-40 |
||
|
5W-30 |
SN/GF-5 |
||||
1. Элементы присадок | ||||||
Молибден (Mo) | мг/кг | 181 | 1 | 44 | 71 | 3 |
Марганец (Mn) | мг/кг | 1 | 0 | 0 | 0 | 1 |
Бор (B) | мг/кг | 300 | 241 | 4 | 159 | 370 |
Магний (Mg) | мг/кг | 5 | 12 | 11 | 6 | 12 |
Кальций (Ca) | мг/кг | 2386 | 2287 | 2524 | 2490 | 3692 |
Барий (Ba) | мг/кг | 0 | 0 | 0 | 0 | 0 |
Фосфор (P) | мг/кг | 720 | 905 | 726 | 974 | 965 |
Цинк (Zn) | мг/кг | 952 | 1085 | 919 | 1148 | 966 |
2. Загрязнения | ||||||
Кремний (Si) | мг/кг | 4 | 5 | 7 | 3 | 4 |
Натрий (Na) | мг/кг | 0 | 0 | 0 | 0 | 0 |
Калий (K) | мг/кг | 0 | 0 | 0 | 0 | 0 |
Массовая доля механических примесей, % | 0 | 0 | 0 | 0 | 0 | |
3. Физико-химические свойства масла | ||||||
Плотность при 15 0С, г/см3 | 0,8626 | 0,855 | 0,8625 | 0,8727 | 0,8742 | |
Кинематическая вязкость при 100 0С, мм2/с | 10,54 | 10,18 | 10,32 | 13,42 | 14,79 | |
Класс вязкости SAE, мм2/с | 9,30-12,50 | 12,50-16,30 | ||||
Индекс вязкости | 167 | 167 | 161 | 156 | 163 | |
Щелочное число, мгКОН/ г | 5,97 | 7,28 | 6,77 | 5,35 | 9,00 | |
Кислотное число, мгКОН/г | 2,96 | 2,78 | 2,25 | 1,93 | 2,17 | |
Температура вспышки в открытом тигле, 0С | 234 | 232 | 226 | 220 | 228 | |
Температура застывания, 0С | -31 | -40 | -38 | -29 | -25 |
Таблица 2. СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ МОТОРНЫХ МАСЕЛ 5W-40
Наименование показателя |
Sumico |
Lexus |
Nissan |
Toyota |
Mobil |
TOTAL |
Shell |
ELF | |||
ALPHA’S |
Genuine |
5W-40 |
5W-40 |
Super |
Quartz |
Helix HX |
Evolut. | ||||
5W-40 |
Motor Oil |
|
|
3000 X1 |
9000 |
Synthet. |
900 NF | ||||
SN |
5W-40 |
|
|
5W-40 |
5W-40 |
5W-40 |
5W-40 | ||||
1. Элементы присадок | |||||||||||
Молибден (Mo) | мг/кг | 1 | 1 | 1 | 1 | 1 | 0 | 44 | 0 | ||
Марганец (Mn) | мг/кг | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Бор (B) | мг/кг | 199 | 194 | 197 | 220 | 186 | 224 | 3 | 244 | ||
Магний (Mg) | мг/кг | 9 | 15 | 14 | 18 | 17 | 17 | 9 | 9 | ||
Кальций (Ca) | мг/кг | 2163 | 2748 | 2741 | 2664 | 2712 | 2810 | 3269 | 3933 | ||
Барий (Ba) | мг/кг | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Фосфор (P) | мг/кг | 713 | 929 | 882 | 940 | 917 | 922 | 938 | 961 | ||
Цинк (Zn) | мг/кг | 826 | 1096 | 1094 | 1025 | 1084 | 1088 | 1130 | 1202 | ||
Кремний (Si) | мг/кг | 5 | 6 | 7 | 7 | 8 | 6 | 5 | 8 | ||
2. Физико-химические свойства масла | |||||||||||
Плотность при 15 0С, г/см3 | 0,8536 | 0,8438 | 0,8565 | 0,8528 | 0,8428 | 0,8536 | 0,8439 | 0,8566 | |||
Кинематическая вязкость при 100 0С, мм2/с | 14,26 | 14,01 | 14,79 | 13,76 | 13,52 | 14,81 | 14,5 | 14,58 | |||
Класс вязкости SAE, мм2/с | 12,50-16,30 | ||||||||||
Индекс вязкости | 168 | 166 | 170 | 168 | 169 | 171 | 168 | 179 | |||
Щелочное число, мгКОН/ г | 5,03 | 7,41 | 7,04 | 7,28 | 7,48 | 7,1 | 8,91 | 9,62 | |||
Кислотное число, мгКОН/г | 2,06 | 3,02 | 2,85 | 2,2 | 2,24 | 2,2 | 2,65 | 1,77 | |||
Температура вспышки, 0С | 236 | 234 | 240 | 210 | 232 | 214 | 236 | 234 | |||
Температура застывания, 0С | -40 | -47 | -42 | -40 | -46 | -37 | -48 | -27 |
Видно, что пакет присадок моторных масел Sumico(ALPHA’S) представлен таким же элементным составом, как и в маслах других производителей, причем количественное содержание присадок отличается не существенно. Следует обратить внимание, что производители масла Sumico(ALPHA’S) делают акцент на инновационные соединения бора в качестве противоизносной и противозадирной присадки. При этом суммарное содержание фосфора и цинка в масле существенно меньше, чем у аналогов от других производителей (см. табл. 1 и 2). Мы говорили в предыдущей статье, что присадка цинка содержит большое количество фосфора и серы, которые являются опасными для здоровья человека, негативно влияют на окружающую среду. Кроме того, увеличение содержания диалкилдитиофосфатов цинка в масле приводит к отложениям на клапанах и свечах зажигания, отравлению каталитических нейтрализаторов отработанных газов, а также к коррозии и повышенному износу медь- и свинецсодержащих деталей двигателя (бронзовых втулок, антифрикционных вкладышей подшипников). Поэтому использование в присадках к моторному маслу соединений бора более предпочтительно.
По такому важному свойству масла как индекс вязкости, который характеризует способность масла сохранять свои свойства и при высоких, и при низких температурах, масло Sumico(ALPHA’S) не отличается от своих аналогов. Другой ключевой характеристикой масла является щелочное число, от которого зависят моющие и нейтрализующие свойства моторного масла. Да, величина щелочного числа масла Sumico(ALPHA’S) меньше, чем у аналогов. Но, необходимо знать, что важным является не абсолютное значение щелочного числа, а скорость его снижения в процессе эксплуатации моторного масла. В любом случае, объективно характеризовать эксплуатационные свойства масел Sumico(ALPHA’S) в сравнении с моторными маслами других производителей можно только на основании результатов лабораторного испытания отработанного масла. В последующих статьях обязательно вернемся к этому вопросу, поскольку анализ отработанных моторных масел проводился, и мы ознакомим Вас с результатами наших исследований.
Токарев С.А., кандидат хим. наук
Полное или частичное копирование материалов нашего сайта разрешено только с указанием автора и прямой гиперссылки на наш сайт autokono.ru.
Характеристики моторных масел — RIXX Corporation
Технические характеристики моторных масел показывают, при каких условиях они способы защищать двигатель от износа, коррозии, загрязнений, возникающих в ходе работы. Информацию о типовых характеристиках можно найти в листе технического описания (TDS, Technical Data Sheet).
Основные технические характеристики моторных масел
Динамическая вязкость
Динамическая вязкость показывает зависимость изменения вязкости масла от скорости перемещения смазываемых деталей относительно друг друга. Определяется на имитаторе холодной прокрутки (CCs) при -30°С.
Вязкость кинематическая
Кинематическая вязкость показывает текучесть моторного масла при нормальной и высокой температуре. Равна отношению динамической вязкости к плотности масла. Для замера используют стеклянный вискозиметр: засекают период, за который масло стекает по капиляру.
Индекс вязкости
Индекс вязкости — это коэффициент изменения вязкости между двумя температурами. Чем выше коэффициент, тем меньше падение вязкости при нагревании масла. Масло с более высоким ИВ обладает лучшей текучестью при низких температурах и более высокую вязкость при рабочих температурах.
Температура вспышки (flash point)
Температура вспышки — самая низкая температура, при которой пары смазочного материала образуют смесь с воздухом, воспламеняющуюся при контакте с огнем. Само масло при этом еще не воспламеняется. Определяют в открытом или закрытом тигле, в последнем случае она на 20-25 градусов ниже..
Температура застывания (por point)
Температура застывания — самая низкая температура, при которой масло еще сохраняет текучесть. Температура застывания, согласно стандартам, на 3°С выше температуры застывания.
Температура застывания показывает возможность переливания моторного масла без необходимости подогрева.
Общее щелочное число (Total Base Number, TBN)
Показатель, характеризующий способность масла нейтрализовать кислоты, называется TBN (общее щелочное число). В процессе сгорания топливно-воздушной смеси образуются кислоты, которые негативно влияют на моторное масло — окисляют его. Чтобы противостоять этому процессу, в моторное масло добавляют специальные моющие и диспергирующие присадки, которые и повышают общую щелочность.
Широко используется метод ASTM D2896, при котором щелочность определяется путем титирования хлорной и уксусной кислотами.
Кислотное число (TAN)
TAN — показатель, характеризующий наличие в масле кислот, которые приводят к коррозии металлов. По этому показателю можно косвенно судить о качестве базового масла. В хорошо очищенных маслах II и III группы, например, TAN будет меньше, чем в I группе. Стандартный метод измерения — ASTM D664
Зольность
Зольность — это показатель количества несгораемых примесей, которые являются следствием наличия в масле комплекса присадок с металлическими и органическими компонентами. Для разных категорий масел существуют свои норматвы содержания сульфатной золы.
Полнозольные (Full SAPS) масла
По классификации ACEA — A1/B1, A3/B3, A3/B4, A5/
B5. Такие масла могут негативно сказываться на многоступенчатых каталитических нейтрализаторах и фильтрах DPF. Типичное значение зольности — 0,9 — 1,1%.
Среднезольные (Mid SAPS) масла
Согласно классификации ACEA имеют обозначения C2 и C3. Зольность таких масел колеблется в диапазоне 0,6-0,9%.
Малозольные (Low SAPS) масла
По классификации ACEA — C1 и C4. По стандарту содержание сульфатной золы не должно превышать 0,5%.
Испаряемость по методу Ноака
Испаряемость — это показатель, характеризующий склонность масла к угару. Выражается в процентах. Для качественных масел показатель не должен превышать 14%.
Выводы
Характеристики моторных масел довольно сложны и непосвященным людям, зачастую, не понятны. Поэтому мы рекомендуем подбирать масло согласно рекомендациям производителя.
Французские моторные масла RIXX полностью соответствуют требованиям ведущих автопроизводителей.
Как определить качество моторного масла
Хотя большинство моторных масел производится в соответствии с приемлемыми стандартами, их общие и специфические качества могут сильно различаться. Некачественные моторные масла часто попадают на рынок по незнанию или жадности. К сожалению, для неосведомленного автовладельца качественное и некачественное моторное масло будут выглядеть и ощущаться одинаково.
Двигатель и стендовые испытания
Двигатель всегда был идеальной платформой для определения требуемого качества масла.Несмотря на то, что конструкция двигателя была изменена в соответствии со стандартами производительности, топливной экономичности и защиты окружающей среды, двигатель продолжает оставаться решающим арбитром качества масла.
Однако использование двигателя для измерения качества масла в динамометрических испытаниях может оказаться дорогостоящим. Даже в этом случае, чтобы помочь контролировать расходы по гарантии, производители двигателей неизбежно проводят разработку и использование испытаний двигателя при определении качества масла, необходимого для конкретной конструкции или компонента.
Хотя это необходимо, создание повторяемых динамометрических испытаний двигателя может быть сложной задачей.По мере того, как конструкция двигателя постепенно увеличивала мощность по сравнению с двигателями меньшего размера, сложность проведения повторяемых динамометрических испытаний возросла еще быстрее. К счастью, как только уровень качества будет определен на динамометре или в полевых условиях, существует гораздо менее затратный подход, который можно применить для более точной оценки качества масла.
Это предполагает использование лабораторных стендовых испытаний, разработанных для тесной корреляции с динамометрическими испытаниями двигателя или полевым опытом.Эти стендовые испытания позволяют относительно недорого измерить качество масла. Однако ценность и значимость этого типа испытаний зависит от ряда факторов, включая идентификацию конкретных потребностей двигателя, четкую и последовательную информацию от двигателя либо в динамометрических испытаниях, либо на полевом опыте, а также понимание взаимосвязи между потребности двигателя и физические и / или химические свойства масла.
Свойства моторного масла
Для работы двигателя масло должно обладать определенными физическими и химическими свойствами.Во время работы с маслом двигатель создает ряд рабочих нагрузок, которые отрицательно влияют на долгосрочную способность масла работать на стабильно высоком уровне. Условия эксплуатации также могут сильно различаться в зависимости от окружающей среды и способа использования транспортного средства. Следовательно, выбор моторного масла для удовлетворения конкретных потребностей и условий эксплуатации требует знания нескольких важных свойств масла, включая вязкость.
Вязкость
Вязкость можно определить как сопротивление жидкости потоку.Поскольку молекулы жидкости в некоторой степени притягиваются друг к другу, требуется энергия, чтобы разлучить их и создать поток. Как правило, более крупные молекулы имеют большее притяжение между собой и более высокую вязкость. Энергия, необходимая для преодоления этого притяжения между молекулами и создания потока жидкости, может рассматриваться как форма трения.
Следовательно, вязкость можно определить как форму молекулярного трения. Из всех физических и химических свойств моторного масла его вязкость и вязкость во время использования часто считаются наиболее важными.
Вязкость и предотвращение износа
Это же молекулярное трение предотвращает слишком быстрое вытекание масла, когда две движущиеся относительно друг друга поверхности двигателя сближаются под давлением. Эта неспособность промежуточного масла быстро ускользнуть и его уровень несжимаемости удерживают две поверхности отдельно и предотвращают износ, процесс, который называется гидродинамической смазкой. Чем выше вязкость, тем сильнее притягиваются молекулы масла и тем выше защита от износа.
Класс вязкости
Вязкость смазочного материала всегда ассоциировалась с защитой от износа. В начале своей истории SAE признало вязкость важной для работы двигателя и ввело систему классификации J300, которая устанавливает уровни вязкости для двигателей по ряду классов. Эти сорта определяются уровнями вязкости в одной или двух температурных зонах. Сегодня оценки устанавливаются для рабочих температур двигателя и для зимних температур, при которых масло влияет на запуск и перекачку.
Вязкость в рабочих условиях
В первые годы существования автомобильных двигателей масла были просто сформулированы и подчинялись уравнению Ньютона для вязкости — чем больше силы использовалось для движения жидкости (напряжение сдвига), тем быстрее она текла (скорость сдвига). По сути, отношение напряжения сдвига к скорости сдвига — вязкость — оставалось постоянным при всех скоростях сдвига. Все моторные масла того времени были по существу односортными и не имели классификации SAE «W».
Это вискозиметрическое соотношение изменилось в 1940-х годах, когда было обнаружено, что добавление небольших количеств высокомолекулярных полимеров, по-видимому, придает маслу желаемые характеристики текучести как для низкотемпературного запуска, так и для работы двигателя при высоких температурах.Соответственно, эти полимерсодержащие масла были включены в систему классификации вязкости SAE как всесезонные моторные масла, поскольку они отвечали требованиям обеих вязкостно-температурных зон.
С этого времени стали очень популярными всесезонные масла (например, SAE 10W-40, 5W-30, 0W-20 и др.). Однако они больше не были ньютоновскими по характеристикам текучести, поскольку было обнаружено, что вязкость уменьшается с увеличением скорости сдвига. Это считалось важным для смазывания двигателей, которые работали при высоких скоростях сдвига (измеряемых в миллионах обратных секунд), в отличие от нескольких сотен обратных секунд вискозиметров с низким сдвигом, которые затем использовались для определения характеристик моторных масел.
Вискозиметрия с высокой скоростью сдвига
Следовательно, возникла необходимость в разработке вискозиметра с высокой скоростью сдвига, чтобы отразить вязкость в двигателях при рабочих температурах. В начале 1980-х годов были разработаны прибор и методика, которые могли достигать нескольких миллионов обратных секунд при 150 ° C, а также обеспечивать высокие скорости сдвига при других температурах как для свежих, так и для отработанных моторных масел.
Инструмент получил название вискозиметр-имитатор конического подшипника.Метод был принят ASTM как метод испытаний D4683 для использования при 150 ° C (а в последнее время как D6616 для использования при 100 ° C). Это критическое стендовое испытание качества моторного масла стало известно как вязкость при высоких температурах и высокой скорости сдвига (HTHS). Затем были введены минимальные пределы для различных марок в системе классификации вязкости SAE.
Интересно, что позже было показано, что этот инструмент был уникальным и в основном абсолютным в том, что он позволял измерять как крутящий момент сдвига или напряжение сдвига, так и скорость сдвига во время работы.Это единственный известный вискозиметр, который может это делать.
Вязкость и гелеобразование масла при низких температурах
Первоначально всесезонные моторные масла были введены для снижения вязкости масла при низких температурах и облегчения запуска двигателя. Это важное преимущество стало очевидным, и с тех пор всесезонные масла стали самой популярной формой моторного масла во всем мире.
С более легким запуском двигателя при низких температурах стала очевидной другая проблема — прокачиваемость масла.Это была значительно более серьезная проблема, поскольку недостаточная прокачиваемость масла могла вывести двигатель из строя. В ходе динамометрических испытаний в холодильной камере было определено, что существует две формы проблемы прокачиваемости. Первый был просто связан с высокой вязкостью и назывался ограниченным потоком.
Второй был менее очевидным и предполагал гелеобразование масла в результате длительного цикла глубокого охлаждения. Это было названо «воздушным связыванием», поскольку масляный насос стал воздушным в результате того, что столб масла был вытянут из поддона, и масло не заполнило эту пустоту, как показано на Рисунке 1.
Этих знаний и стендовых испытаний, которые изначально, казалось, предсказывали обе формы отказа, было недостаточно. Зимой 1979-80 гг. В Су-Фолс, Южная Дакота, цикл охлаждения показал, что связывание воздуха могло происходить при относительно мягких условиях охлаждения. За 24 часа был разрушен ряд двигателей, содержащих масло.
Цикл охлаждения создавал условия, при которых масло становилось связанным с воздухом. Этот дорогостоящий инцидент выявил необходимость в более чувствительном стендовом испытании, которое точно предсказало бы тенденцию отказов в перекачиваемости из-за связывания воздуха.
Индекс гелеобразования
Моторное масло, связанное с воздухом, которое вызвало отказы в Су-Фолс, послужило убедительным примером. Был разработан новый прибор и методика лабораторных испытаний, чтобы указать на любую тенденцию испытательного масла к желатинизации. Техника, которая предусматривала непрерывную работу на низких оборотах цилиндрического ротора в свободно окружающем статоре, была немедленно включена в спецификации моторного масла и позже стала ASTM D5133.
Это не только показало тенденцию масла к ограничению текучести, но также указывало на степень гелеобразования, которое могло произойти в измеренном диапазоне температур (обычно от минус 5 до минус 40 градусов C).Параметр был назван индексом гелеобразования. Сегодня спецификации моторных масел для всесезонных масел требуют максимального индекса гелеобразования 12.
Вязкость и поглощение энергии
Несмотря на то, что вязкость полезна для двигателя в предотвращении износа из-за гидродинамической смазки, она также имеет некоторые отрицательные аспекты, которые могут повлиять на эффективность работы двигателя. Молекулярное трение масла, которое разделяет две поверхности в относительном движении, требует энергии для его преодоления.Это значительное количество энергии от двигателя в обмен на обеспечиваемую защиту от износа. Таким образом, тщательное определение вязкости масла имеет решающее значение для владельцев транспортных средств и правительств, устанавливающих ограничения по экономии топлива.
Снижение вязкости масла может быть важным шагом в уменьшении вязкого трения для повышения эффективности использования топлива. Интересно отметить, что за последние несколько лет увеличилось количество автомобилей, работающих с моторными маслами с более низким уровнем вязкости, что заметно повысило эффективность их двигателей.
Десять лет назад самыми низкими классами вязкости по SAE были масла SAE 0W-20 и 5W-20, при этом SAE 20 обладало минимальной вязкостью при высокой скорости сдвига 2,6 сантипуаз (сП) для имитации работы двигателя при 150 ° C. На рис. моторные масла, продаваемые в Северной и Южной Америке, а также для моторных масел SAE 5W-30.
Японские автопроизводители недавно потребовали еще более низких классов вязкости. Как следствие, SAE ввело три новых эксплуатационных класса, обозначенных как SAE 16 (2.Минимум 3 сП при 150 ° C), SAE 12 (минимум 2,0 сП при 150 ° C) и SAE 8 (минимум 1,7 сП при 150 ° C). Эти требования к классам также показаны на Рисунке 2 для сравнения.
Ни одно из этих низкосортных масел еще не поступило на рынок для анализа. Поскольку вязкость напрямую связана с количеством энергии, затрачиваемой двигателем на защиту от износа за счет гидродинамической смазки, можно ожидать, что такое снижение вязкости будет иметь важные преимущества с точки зрения топливной экономичности, но только в двигателях, предназначенных для их использования.
Индекс топливной эффективности, зависящий от вязкости
Учитывая влияние вязкости масла на двигатель, была разработана методика расчета влияния моторных масел на эффективность использования топлива. Чтобы иметь смысл, значения вязкости должны были быть получены при высоких скоростях сдвига, связанных с работой в определенных частях двигателя.
Более ранние динамометрические исследования определили процент трения и рабочую температуру пяти основных участков смазки в поршневом газовом двигателе, ответственных за почти все потери эффективности.Эта информация использовалась для разработки параметра индекса вязкой топливной эффективности (V-FEI).
При этом значении, которое находится в диапазоне от 0 до 100, чем выше V-FEI данного моторного масла, тем меньше энергии теряется из-за вязкости и, следовательно, тем более экономичен двигатель. Хотя разные конструкции двигателей могут иметь разные уровни трения в основных смазочных областях, использование этих данных о трении дает сравнительную ценность для моторных масел.
На рисунке 3 показано среднее значение моторных масел SAE 0W-20 и 5W-30 на рынках Северной и Южной Америки с 2008 по 2014 год.Для сравнения, средний V-FEI для SAE 0W-20 и 5W-30 в более раннем исследовании составлял 46 и 47 соответственно.
Как и ожидалось, было определено, что среднегодовые всесезонные масла SAE 0W-20 способствовали большей топливной эффективности двигателя, чем усредненные всесезонные масла SAE 5W-30, из-за разницы в вязкости, показанной на рисунке 2. За исключением 2012 года, Увеличение V-FEI эквивалентно почти 7-8 процентам зависящей от вязкости топливной эффективности.
Уменьшение средней топливной эффективности моторных масел SAE 0W-20, собранных в 2012 году, может указывать на разработку составов, отвечающих опасениям автопроизводителей, что преимущества гидродинамической смазки не будут потеряны в усилиях по повышению топливной эффективности.
Летучесть моторного масла
Другой аспект, который следует учитывать при снижении вязкости композиций моторного масла, заключается в том, что такое снижение чаще всего достигается за счет использования базовых масел с более высокой летучестью. Улетученное масло уменьшает количество смазочного материала, обслуживающего двигатель, и может содержать компоненты, загрязняющие выхлопной катализатор, что отрицательно влияет на способность катализатора уменьшать смог. Масло, остающееся после потери более летучих компонентов, также будет более вязким и поглощающим энергию.
На рисунке 4 показан отклик двух самых летучих всесезонных моторных масел. Также показана максимальная летучесть, установленная Международным комитетом по стандартизации и одобрению смазочных материалов (ILSAC).
В последние несколько лет стало очевидно, что классификационные категории SAE 0W-20 и 5W-30 были разработаны для соответствия спецификации волатильности ILSAC с приемлемым запасом. Эти результаты предполагают, что контроль летучести может быть менее требовательным для недавно классифицированных всесезонных масел, обозначенных как SAE 0W-16, 0W-12 и 0W-8.
Выбросы и летучесть фосфора
Растворимые соединения фосфора, такие как диалкилдитиофосфат цинка (ZDDP), уже много лет используются при составлении моторных масел. Эти противоизносные и антиокислительные составы оказали существенную поддержку при разработке современных двигателей.
В середине 1900-х годов поршневой двигатель был признан одним из основных источников загрязнения воздуха. Несгоревшие или частично сгоревшие углеводороды из выхлопных газов двигателей были преобразованы солнечным светом в ядовитые газообразные углеводороды, которые образовали смог в некоторых крупных городах.
Как следствие, в 1970-х годах были разработаны каталитические нейтрализаторы выхлопных газов для обработки выхлопных газов и их преобразования в двуокись углерода и воду. К сожалению, спустя годы после разработки каталитического нейтрализатора было обнаружено, что некоторые элементы в бензине или моторном масле, включая фосфор и серу, дезактивируют катализатор, покрывая его. В конечном итоге это привело к ограничению количества этих химикатов в моторном масле и топливе.
Индекс выбросов фосфора
Тест на летучесть Селби-Ноака был разработан в начале 1990-х годов как лучший и безопасный подход для определения летучести моторного масла.Он собирал летучие компоненты теста на летучесть для дальнейшего анализа, который был полезен при обнаружении фосфора и серы. При первом анализе летучих веществ, собранных в ходе стендовых испытаний, было очевидно, что фосфорные добавки в моторных маслах также производили фосфор в результате разложения присадок.
На основе этих результатов был разработан параметр, связанный с количеством фосфора, высвобожденного во время испытания, который называется индексом выброса фосфора (PEI).
На рисунке 5 показано изменение PEI за последние восемь лет. Очевидно, что значительный прогресс был достигнут в снижении разложения фосфора и / или летучести этих двух всесезонных классификаций SAE. Снижение PEI до 6-10 миллиграммов на литр моторного масла является значительным изменением в защите каталитического нейтрализатора от воздействия фосфора.
В связи с тенденцией к меньшим, топливосберегающим и оборудованным турбокомпрессором двигателям, генерирующим более высокие температуры во время работы, стендовые испытания, которые могут выявить тенденции выбросов фосфора в составе масла, были бы полезны при разработке смазочных материалов, наиболее подходящих для двигателя и окружающей среды.
Содержание и летучесть фосфора
Насколько влияет фосфор в моторном масле на количество фосфора, улетучивающегося во время работы двигателя, является важным вопросом, влияющим на выбор присадок в составе масла. На рисунке 6 показано содержание фосфора в ряде моторных масел SAE 0W-20 и 5W-30 в зависимости от полученных значений PEI.
Данные показывают, что летучесть фосфора, полученная с помощью теста Селби-Ноака, практически не связана с количеством фосфора, присутствующего в масле в качестве добавки.Отсутствие корреляции между фосфором в моторном масле и количеством испарившегося фосфора проявляется в низких значениях коэффициента корреляции (R²).
Этот параметр был бы близок к единице, если бы концентрация фосфора влияла на его летучесть. Как показано на рисунке 6, значения, полученные на основе данных, намного ниже: R² составляет 0,05 для моторных масел SAE 0W-20 и 0,17 для моторных масел SAE 5W-30.
Данные PEI в основном сгруппированы по значениям от 2 миллиграммов на литр до примерно 30 миллиграммов на литр.Однако небольшое количество значений PEI превышает 40 миллиграммов на литр. Эти моторные масла могут быть более вредными для катализатора выхлопных газов. Однако, как показано на Рисунке 5, уровни PEI заметно снизились за последние несколько лет.
Несомненно, качество моторных масел будет играть гораздо большую роль в более компактных и мощных двигателях с турбонаддувом, которые выходят на автомобильный рынок. Однако установить качество моторного масла по внешнему виду практически невозможно.
Это определение можно сделать только при использовании масла или его предварительном испытании. Очевидно, что последний вариант является наиболее предпочтительным для владельцев автомобилей, которые вложили значительные средства и нуждаются в хорошо функционирующем и надежном двигателе.
Об авторе
Об авторе
Свойства моторного масла | HowStuffWorks
Моторные масла представляют собой сложную смесь многих ингредиентов, но они состоят из двух основных элементов — базового масла и присадок.При использовании обычного масла сырая нефть тщательно очищается до получения подходящего базового масла. Менее очищенные части сырой нефти намного толще и используются для различных целей, таких как кровельный гудрон или дорожный асфальт.
Присадки к маслу выполняют ряд важных функций. Во-первых, они предотвращают разрушение масла из-за высоких температур двигателя. Они также предотвращают ржавчину и коррозию, улучшают чистоту двигателя, создают пленку, защищающую металлические детали от износа и улучшающие характеристики текучести масла.
Когда вы покупаете моторное масло, вы увидите информацию о характеристиках каждого продукта, указанную на этикетке. Для начала убедитесь, что вы ищете подходящее масло для своего автомобиля — масло типа S предназначено для бензиновых двигателей, а масло типа C используется только в дизельных двигателях.
Вы также увидите значения вязкости, указанные на этикетке продукта. Высоковязкие масла густые и текут медленно, а низковязкие масла тоньше и текут быстрее.
Вязкость масла изменяется при нагревании двигателя. По мере того, как температура двигателя изменяется от холодной до очень высокой, масло разжижается, и, как следствие, его смазочные свойства тоже меняются. Например, масло 5W-30 имеет вязкость масла 5W в холодных и зимних условиях (W означает зима) и вязкость масла 30 весовых единиц при обычных рабочих температурах двигателя. Чтобы решить эту проблему, производители добавляют в масло полимеры, чтобы сделать его пригодным для более широкого диапазона температур.
Синтетические масла лучше выдерживают суровые температуры, чем обычные масла.Например, синтетическое масло 0W-30 плавно течет при -62 градусах Фаренгейта (-52,2 градуса Цельсия) и даже более низких температурах. Напротив, при таких температурах обычное масло замерзает до полной остановки. Другими словами, у этого нового сорта просто нет общепринятого эквивалента.
Это улучшение вязкости и характеристик произошло не быстро — ученым потребовалось много лет исследований, чтобы заставить синтетику работать хорошо. По мере того, как ученые разрабатывали свои новые синтетические материалы и смеси, появились новые категории масел.
Моторное масло | Mein Autolexikon
В двигателях внутреннего сгорания моторное масло выполняет ряд функций. Одним из наиболее важных из них является смазка механических компонентов. Смазка снижает трение между движущимися частями и сохраняет …
Охрана окружающей среды
Современные моторные масла повышают общий КПД двигателя, тем самым помогая снизить выбросы. Кроме того, современные моторные масла, поддерживающие беззольное сгорание, помогают повысить функциональную надежность систем доочистки выхлопных газов, таких как сажевые фильтры.Современные моторные масла не содержат хлора или тяжелых металлов и могут быть легко переработаны. Это означает, что ресурсы защищены.
Функция
В двигателях внутреннего сгорания моторное масло выполняет ряд функций. Одним из наиболее важных из них является смазка механических компонентов. Смазка снижает трение между движущимися частями и сводит к минимуму износ. Моторное масло также должно охлаждаться, очищаться, обеспечивать защиту от коррозии и уплотнять камеры сгорания. И последнее, но не менее важное: он используется для передачи мощности в гидравлических системах двигателя (натяжители цепи, регулировка фаз газораспределения и т. Д.).).
Состав моторного масла
В зависимости от типа и характеристик современные моторные масла созданы на основе различных базовых масел или составов базовых масел. Также используются добавки, которые выполняют множество задач. Высокоэффективное моторное масло может быть получено только с сбалансированной формулой (базовое масло и компоненты присадок).
Состав типичного моторного масла следующий:
- 78% базовое масло
- 10% добавка для улучшения вязкости (для улучшения текучести)
- 3% моющее средство (моющие вещества, очищающие двигатель)
- 5% диспергатор (для суспендирования частиц грязи)
- 1% защита от износа
- 3% другие компоненты
Вязкость
Вязкость — одно из важнейших свойств моторного масла.Вязкость масла всегда указывается на его цилиндре. Вязкость — это мера сопротивления жидкости потоку. Это определяется внутренним трением, которое препятствует потоку соседних частиц в жидкости. Еще в 1911 году вязкость легла в основу первой системы классификации моторных масел и была определена в системе классификации Общества автомобильных инженеров (SAE). Большинство используемых сегодня масел — всесезонные. SAE 5W30 — это пример обозначения вязкости всесезонного масла.
Измерения вязкости основаны на двух переменных:
Динамическая вязкость
Описывает сопротивление моторного масла течению при низких температурах. Масла делятся на зимние классы вязкости 0W, 5W, 10W, 15W, 20W, 25W. Чем меньше число перед буквой W, тем ниже вязкость масла при низких температурах. Динамическая вязкость влияет на скорость стартера, например, при холодном двигателе. Чем ниже индекс вязкости в холодном состоянии, тем легче будет запустить холодный двигатель.
Кинематическая вязкость
Кинематическая вязкость описывает соотношение между динамической вязкостью и толщиной моторного масла при определенной температуре. Летние классы вязкости по SAE классифицируются при температуре испытания 100 ° C. Типичные классы вязкости — 20, 30, 40, 50 и 60. Чем больше число перед буквой W, тем выше вязкость масла при 100 ° C.
HTHS
Указанные выше классы вязкости (зимний и летний) дополняются так называемой вязкостью HTHS.HTHS расшифровывается как High Temperature High Shear. Он описывает динамическую вязкость, измеренную при 150 ° C и более высоких сдвиговых усилиях. Он выражается в миллипаскалях в секундах (мПа · с). Предельные значения HTHS определены для обеспечения того, чтобы даже в подшипниках (где и усилия сдвига, и температура масла высоки) моторные масла могли обеспечить необходимую смазку.
Предельное значение для моторных масел со спецификациями ACEA A2 / A3 и ACEA B2 / B3 должно быть найдено при HTHS 3,5 мПа · с. Качество моторного масла категории ACEA A1 / B1 имеет пониженное значение HTHS до 2.9 мПас. Расход топлива должен быть ниже за счет пониженного индекса HTHS.
Возможность смешивания моторных масел
Как правило, моторные масла можно смешивать независимо от того, на синтетической или минеральной основе они. Смешивание поощряют даже автомобильные компании.
Однако моторные масла разных марок или составов следует смешивать только в том случае, если требование доливки не может быть выполнено другим способом. Соответственно, не рекомендуется смешивать синтетические или полусинтетические моторные масла с моторными маслами на минеральной основе, так как это снизит стандарты качества синтетических масел.Рейтинг качества зависит от самого слабого звена в цепи.
Увеличение интервалов замены смазочного материала означает, что масла должны соответствовать все более жестким требованиям. Например, современные моторные масла должны поддерживать постоянные характеристики на протяжении всего срока службы, а также демонстрировать высокую термическую и окислительную стабильность для длительного срока службы и оптимизированные характеристики трения для снижения потерь энергии.
Амортизация
Чтобы гарантировать эксплуатационную надежность двигателя и избежать повреждений, вызванных моторным маслом, уровень масла необходимо регулярно проверять.Если уровень слишком низкий, масло необходимо немедленно долить.
Масло — изнашиваемая деталь. Его необходимо менять с периодичностью, предписанной производителем транспортного средства. Если масло не менять через предписанные промежутки времени, существует риск более быстрого износа механических компонентов двигателя. Последствиями этого может стать дорогостоящий ремонт или даже списание двигателя.
Как при замене, так и при доливке масла необходимо использовать масло, отвечающее требованиям качества, предписанным производителем двигателя.Это обеспечит надежную работу двигателя в течение всего срока службы, эффективную работу и низкий уровень выбросов загрязняющих веществ.
Что нужно знать
Если сегодня утром вы проснулись с вопросом: «Интересно, что нужно знать о моторном масле для автомобилей», значит, вам повезло. Здесь мы представляем грунтовку по основам автомобильных моторных масел.
Вот что мы расскажем:
Готовы? Пойдем.
Что такое автомобильное моторное масло?
Автомобильное моторное масло — один из важнейших факторов, влияющих на производительность и долговечность вашего двигателя.Проще говоря, это смазка, которая не дает всем этим металлическим частям разрывать друг друга или свариваться в самый крутой в мире якорь для лодок. Без автомобильного моторного масла ваш двигатель разрушится за считанные секунды.
Купить AMSOIL в Великобритании
Из чего делают автомобильное моторное масло?
Автомобильное моторное масло содержит два основных компонента: базовые масла и присадки . Они работают в тандеме, чтобы произвести конечный продукт, который вы вставляете в свой двигатель.Подумайте о кофе как о аналогии: базовое масло — это вода, а пакет присадок — это кофейные зерна.
Базовые масла составляют большую часть моторного масла автомобиля. Они смазывают внутренние движущиеся части, поглощают тепло и уплотняют поршневые кольца.
Базовые масла для автомобильных моторных масел могут состоять из 1) нефти, 2) химически синтезированных материалов или 3) комбинации синтетических материалов и нефти (так называемой полусинтетической или синтетической смеси).
Купить AMSOIL в Норвегии
Нефтяные (или обычные) базовые масла получают из сырой нефти.Загрязняющие элементы, такие как сера, азот, кислород и металлические компоненты, такие как никель или ванадий, присущи сырой нефти и не могут быть полностью удалены в процессе очистки. В процессе очистки масла различные типы молекул в масле разделяются по весу, в результате чего молекулы сходны по весу, но различаются по структуре, что снижает производительность.
Синтетические базовые масла, , с другой стороны, тщательно спроектированы и включают только полезные молекулы.Таким образом, синтетические базовые масла не содержат загрязняющих веществ или молекул, не предназначенных для использования по назначению. Их универсальность и чистые однородные молекулярные структуры придают свойства, которые обеспечивают лучшее снижение трения, оптимальную топливную экономичность, максимальную прочность пленки и характеристики при экстремальных температурах, с которыми обычные смазочные материалы просто не могут прикоснуться.
Купить AMSOIL в Финляндии
Присадки к автомобильным моторным маслам
Различные химические вещества, входящие в состав системы присадок к автомобильному моторному маслу, обеспечивают противоизносные, противопенные, антикоррозионные, нейтрализацию кислоты, поддержание вязкости, моющие и диспергирующие свойства.Несколько примеров химических добавок включают цинк, фосфор и бор. Достижение идеального баланса подходящих присадок к двигателю по отношению к базовому маслу является сложной задачей для разработчиков масел, особенно когда автомобили становятся все более требовательными и сложными.
Что должно делать автомобильное моторное масло?
Масло для современных автомобильных двигателей — это высокоспециализированный продукт, тщательно разработанный инженерами и химиками для выполнения многих основных функций. Масло автомобильное моторное должно…
Минимизируйте трение
Смазочные материалы уменьшают контакт между компонентами, сводя к минимуму трение и износ.
Купить AMSOIL в Европе
Clean
Смазочные материалы поддерживают внутреннюю чистоту, задерживая загрязнения в жидкости или предотвращая прилипание загрязнений к компонентам. Базовые масла обладают различной степенью растворимости, что помогает поддерживать внутреннюю чистоту. Растворитель — это способность жидкости растворять твердое вещество, жидкость или газ.
Моющие средства помогают поддерживать критически важные компоненты, такие как поршни, в чистоте и исправном состоянии.
Хотя растворимость масла важна, детергенты и диспергаторы играют ключевую роль. Моющие средства — это присадки к двигателю, которые предотвращают прилипание загрязнений к компонентам, особенно горячим компонентам, таким как поршни или поршневые кольца. Диспергаторы — это присадки к двигателю, которые удерживают загрязняющие вещества во взвешенном состоянии в жидкости. Диспергаторы действуют как растворители, помогая моторному маслу автомобиля поддерживать чистоту и предотвращая образование отложений.
Cool
Снижение трения сводит к минимуму нагрев движущихся частей, что снижает общую рабочую температуру оборудования.Смазочные материалы также поглощают тепло от контактных поверхностей и переносят его в место для безопасного рассеивания, например, в масляный поддон.
Купите AMSOIL в вашей стране
Интересный факт: для смазки двигателя требуется очень небольшое количество автомобильного моторного масла по сравнению с количеством, необходимым для надлежащего охлаждения этих внутренних деталей.
Уплотнение
Автомобильное моторное масло действует как динамическое уплотнение в таких местах, как стык поршневого кольца и цилиндра. Динамическое уплотнение помогает удерживать газы сгорания в камере сгорания, что увеличивает мощность двигателя и помогает предотвратить загрязнение моторного масла автомобиля в поддоне картера горячими газами.
Амортизатор
Смазка может смягчить удар механического удара. Высокофункциональная смазочная пленка может противостоять разрыву, поглощать и рассеивать эти всплески энергии по широкой площади контакта. Поскольку механический удар по компонентам смягчается, износ и повреждающие силы сводятся к минимуму, что увеличивает общий срок службы компонента.
Защита от коррозии
Смазка должна обладать способностью предотвращать или минимизировать коррозию внутренних компонентов.Смазочные материалы достигают этого либо путем химической нейтрализации коррозионных продуктов, либо путем создания барьера между компонентами и коррозионным материалом.
Интересный факт: автомобильное моторное масло не обладает естественной способностью противостоять ржавчине и коррозии; эти свойства должны быть добавлены за счет использования присадок к двигателю.
Transfer Energy
Поскольку автомобильное моторное масло несжимаемо, оно является отличной средой для передачи энергии, например, при использовании с подъемниками гидравлических клапанов или для реализации компонентов в двигателе с регулируемыми фазами газораспределения.
Вязкость — важнейшее свойство автомобильного моторного масла. Чем ниже вязкость, тем быстрее течет масло, как вода. Более густые масла текут медленнее, как мед.
Что такое вязкость?
Вязкость относится к сопротивлению текучести автомобильного моторного масла и является наиболее важным свойством масла. Вязкость масла меняется в зависимости от температуры: оно становится более жидким в горячем состоянии, гуще — в холодном.
Хотя автомобильное моторное масло должно течь при низких температурах для смазки двигателя при запуске, оно также должно оставаться достаточно густым, чтобы защитить двигатель при высоких рабочих температурах.Когда масло используется при различных температурах, как в большинстве двигателей, изменение вязкости должно быть минимальным.
Разве не удобно иметь номер, указывающий на изменение вязкости масла? Мы это делаем, и это называется индексом вязкости (VI). Он измеряется путем сравнения вязкости масла при 40 ° C (104 ° F) с его вязкостью при 100 ° C (212 ° F). Чем выше индекс вязкости, тем меньше изменяется вязкость при изменении температуры и тем лучше масло защищает двигатель.Полностью синтетические масла обычно имеют более высокий индекс вязкости, чем обычные масла.
Класс вязкости по SAE
Общество автомобильных инженеров (SAE) разработало несколько классификаций или классов вязкости, таких как 5W-30, 10W-40 и 15W-50.
Эти классы вязкости по SAE обозначают конкретные диапазоны, в которые попадает конкретное масло. «W» означает, что он подходит для использования при низких температурах. (Думайте о букве «W» как о значении «Зима».) Классификация увеличивается численно; чем меньше число, тем ниже температура, при которой масло можно использовать для безопасной и эффективной защиты двигателя.Более высокие значения отражают лучшую защиту в условиях высокой температуры и высоких нагрузок.
Подавляющее большинство современных масел являются мультивязкостными, что означает, что они по-разному ведут себя при разных рабочих температурах, чтобы обеспечить лучшее из обоих миров — хорошую текучесть при понижении температуры и надежную защиту при достижении двигателем рабочей температуры. Например, автомобильное масло 5W-30 работает так же, как SAE 5W при 40 ° C и автомобильное масло SAE 30 при 100 ° C.
Как классифицируется масло для бензиновых двигателей?
Американский институт нефти (API) разработал систему классификации для идентификации масел, разработанных для удовлетворения различных эксплуатационных требований бензиновых и дизельных двигателей.Система API делится на две основные категории: серия S и серия C.
Сервисная классификация серии S подчеркивает свойства масла, важные для бензиновых двигателей. Когда масло проходит серию стендовых испытаний и испытаний двигателя (испытания последовательности API), оно может продаваться с соответствующей служебной классификацией API. Классификация продвигается в алфавитном порядке по мере повышения уровня характеристик смазочного материала. Каждая классификация заменяет предыдущие. Масла, соответствующие последней классификации API, API SN-PLUS, могут использоваться в любом двигателе, требующем этого, или предыдущей спецификации API, если не указано иное.
Категория API SN-PLUS является самой последней классификацией, заменяющей все предыдущие. Масла SN-PLUS предназначены для обеспечения…
- Повышенная стойкость к окислению
- Защита вкладов
- Максимальная экономия топлива
- Характеристики выхлопной системы
- Устойчивость к новому типу детонации двигателя, называемому предварительное зажигание на низких оборотах (LSPI)
Как классифицируется масло для дизельных двигателей?
Классификациясерии C относится к дизельным двигателям и включает указанные ниже.Не все классификации серии C заменяют друг друга. Обратите внимание на новую классификацию FA-4, которая относится только к некоторым дизельным двигателям 2017 года выпуска и новее. Классификация FA-4 была введена в первую очередь, чтобы помочь максимизировать экономию топлива в грузовых автомобилях повышенной проходимости.
Какой главный вывод?
Это тонна информации, но все сводится к следующему: автомобильное моторное масло — это больше, чем просто товар. Это жизненно важная часть долговечности и производительности вашего двигателя. Таким образом, в долгосрочной перспективе выгодно использовать лучшее масло для вашего автомобиля.Начальная цена высококачественного полностью синтетического масла может быть больше, но стоимость срока службы может быть намного меньше по сравнению с обычным маслом, особенно если вы практикуете увеличенные интервалы замены.
ГДЕ КУПИТЬ AMSOIL
Вернуться в блог
Следующее сообщение
Категории:
Основы моторного масла— Часть 3: Какие стандарты для моторного масла? — Опыт применения — Lube Talk
В заключительной части вводного праймера, состоящего из трех частей, по моторным смазочным материалам, мы более подробно рассматриваем стандартизацию моторных масел во всем мире, так что любой, кто говорит о смазочных материалах из любой страны, использует то же самое. определения.Читайте сводку глобальных спецификаций и классификаций смазочных материалов, а также краткий обзор спецификаций вязкости по SAE.
В первых двух статьях объяснялись два основных компонента смазочных материалов — базовое масло и присадки. Чтобы гарантировать, что все во всем мире используют один и тот же «язык», говоря о смазочных материалах, во всем мире должна быть какая-то форма стандартизации.
В нашей заключительной статье мы более внимательно рассмотрим эту стандартизацию, рассмотрев различные системы классификации.
Эти системы классификации преодолевают языковые барьеры. Они используются во всем мире и позволяют легко определить характеристики и качество масла.
Уровни качества масла могут быть легко записаны в руководствах по эксплуатации автомобилей и связаны с идентификацией на этикетке / упаковке масла. Фактически, производители масел используют классификацию масел как товарный признак. Это помогает улучшить взаимодействие между нефтяной промышленностью, производителями двигателей и клиентами.
Как оцениваются рабочие характеристики моторных масел?
Есть много разных способов классификации масел.Ниже приведены несколько наиболее часто используемых для различения масел с приемлемыми и неприемлемыми характеристиками для различных применений.
Примечание. Многие производители оригинального оборудования также имеют свои собственные дополнительные «внутренние» требования к испытаниям и системы сертификации.
SAE | · Общество автомобильных инженеров · Классифицирует масла только по их реологическим (вязкостным) свойствам |
ILSAC | · Международный комитет по стандартизации и одобрению смазочных материалов · Это ассоциация американских и японских производителей легковых автомобилей. · Определяет характеристики масла, необходимые для защиты оборудования |
ACEA | · Европейская ассоциация автопроизводителей (включает в себя как тяжелые, так и легкие) · Определяет требования к характеристикам масла и устанавливает спецификации (фактически аналогично ILSAC и API вместе взятым) |
API | · Американский институт нефти · Определяет требования к моторному маслу для удовлетворения требований ILSAC |
Во многих случаях вязкость является одним из ключевых способов измерения характеристик моторного масла.
- Вязкость при низких температурах:
- Характеристики холодного пуска
- Низкотемпературная смазка и экономия топлива
- Низкая температура подачи масла
- Вязкость при высоких температурах:
- Высокотемпературная гидродинамическая смазка (т.е. характеристики износа)
- Расход масла
- Экономия топлива
- Высокотемпературная вязкость при высоком сдвиге используется для прогнозирования характеристик масла в тяжелых условиях эксплуатации
Класс вязкости SAE (J300)
SAE J300 — это стандарт, который переводит их в практическую систему классификации:
Используя вязкость как меру характеристик масла, моторные масла можно разделить на два основных типа — всесезонные и всесезонные.
Сезонное масло соответствует требованиям одного класса SAE (например, SAE 20 или SAE 40 в таблице выше). Поскольку моносортные продукты не содержат модификаторов вязкости, они больше подходят для работы в более узком температурном диапазоне.
С другой стороны, всесезонное масло может удовлетворять требованиям нескольких классов SAE. Всесезонные масла содержат различные присадки, которые поддерживают постоянную вязкость масла независимо от температуры, т.е.е. у них более высокий индекс вязкости, чем у моносортных масел.
Как видно на приведенном ниже графике, при более высоких температурах выше 100 ° C это всесезонное масло имеет более высокую несущую способность, то есть выглядит как более толстая масляная пленка, чем односортное масло. При более низких температурах всесезонное масло также имеет лучшие характеристики текучести на холоде.
В таблице ниже приведены различные преимущества масел.
В конечном счете, выбор правильной вязкости масла для ваших задач жизненно важен.Правильная вязкость гарантирует:
- Полная гидродинамическая смазка
- Минимальный расход масла
- Быстрый поток масла при низкой температуре (особенно при запуске)
- Минимизация разряда батареи во время запуска
- Хорошая экономия топлива
Мы рекомендуем всегда консультироваться с вашим поставщиком смазочных материалов, чтобы выбрать наиболее подходящее моторное масло для вашего бизнеса.
Какие вопросы у вас есть о моторном масле? Поделитесь ими с нами в комментариях ниже или нажмите «Нравится» на панели инструментов справа, если вы нашли это обновление полезным!
Все, что нужно знать о моторном масле
1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.
3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%. В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации и занятые на должностях. которые были получены до или во время обучения в области ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.
7) Для завершения некоторых программ может потребоваться более одного года.
10) Финансовая помощь, стипендии и гранты доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.
11) См. Подробную информацию о программе для получения информации о требованиях и условиях, которые могут применяться.
12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых Вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.
14) Программы поощрения и соответствие критериям для сотрудников остаются на усмотрении работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.
15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI. Программы доступны в некоторых регионах.
16) Не все программы аккредитованы ASE Education Foundation.
20) Льготы VA могут быть доступны не на всех территориях кампуса.
21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.
22) Грант «Приветствие за служение» доступен всем ветеранам, имеющим право на участие, во всех местах на территории кампуса. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.
24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.
25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, смог. инспектор и менеджер по запасным частям. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Бюро трудовой статистики США по занятости и заработной плате, май 2019. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.
28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобилей и связанных с ними (49-3021), в Содружестве Массачусетс составляет от 31 360 до 34 590 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Тем не мение, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в разделе «Занятость и заработная плата» Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по дизельным двигателям . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.
30) Расчетная годовая средняя зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетса: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов США (данные по Массачусетскому труду и развитию рабочей силы, данные за май 2018 г., просмотренные 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: Министерство труда США оценивает почасовую заработную плату в размере 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, дата просмотра 14 сентября 2020 г.).) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.
31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные за май 2018 г., Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.
34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по механической обработке с ЧПУ. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, оператор ЧПУ, подмастерье. слесарь-механик и инспектор обработанных деталей. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.
38) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость в каждой из следующих профессий составит: Техники и механики автомобильного сервиса — 728 800; Сварщики, резаки, паяльщики и паяльщики — 452 500 человек; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 290 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары — 159 900; и операторы инструментов с ЧПУ, 141 700.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 год и прогноз на 2029 год, Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 года. UTI является образовательным учреждением и не может гарантировать занятость или заработную плату.
39) Переподготовка доступна для выпускников только в том случае, если курс еще доступен и есть места. Студенты несут ответственность за любые другие расходы, такие как оплата лабораторных работ, связанных с курсом.
41) Для специалистов по обслуживанию автомобилей и механиков U.По прогнозам Бюро статистики труда, в период с 2019 по 2029 год в среднем будет открываться 61 700 рабочих мест в год. В число вакансий входят вакансии, связанные с чистым изменением занятости и чистым замещением. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019–29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
42) Для сварщиков, резчиков, паяльщиков и паяльщиков Бюро статистики труда США прогнозирует в среднем 43400 вакансий в год в период с 2019 по 2029 год.Вакансии включают вакансии, связанные с чистым изменением занятости и чистым замещением. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019–29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
43) Для механиков автобусов и грузовиков и специалистов по дизельным двигателям Бюро статистики труда США прогнозирует ежегодно в среднем 24 500 вакансий в период с 2019 по 2029 годы. Вакансии включают вакансии, связанные с чистыми изменениями занятости и чистыми заменами.См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019–29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
44) Для ремонтников кузовов автомобилей и связанных с ними ремонтов Бюро статистики труда США прогнозирует в среднем 13 600 вакансий в год в период с 2019 по 2029 годы. Вакансии включают вакансии, связанные с чистыми изменениями в занятости и чистыми замещениями. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогнозируемые на 2019–29 гг., США.S. Bureau of Labor Statistics, www.bls.gov, дата просмотра — 3 июня 2021 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.
45) Для операторов компьютерных инструментов с числовым программным управлением Бюро статистики труда США прогнозирует в среднем 11 800 вакансий в год в период с 2019 по 2029 год. Открытые вакансии включают вакансии, связанные с чистыми изменениями занятости и чистыми замещениями. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019–29 гг., Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
46) Студенты должны иметь средний балл не ниже 3.5 и посещаемость 95%.
47) Бюро статистики труда США прогнозирует, что к 2029 году общая численность занятых в стране для специалистов по обслуживанию автомобилей и механиков составит 728 800. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 и прогнозируемые 2029, Бюро статистики труда США, www.bls. gov, дата просмотра — 3 июня 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
48) Бюро статистики труда США прогнозирует, что общая численность занятых в стране механиков автобусов и грузовиков и специалистов по дизельным двигателям к 2029 году составит 290 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 год и прогнозируемый показатель 2029 года, Бюро статистики труда США, www. .bls.gov, просмотрено 3 июня 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
49) Бюро статистики труда США прогнозирует, что к 2029 году общая численность занятых в сфере автомобильного кузова и связанных с ним ремонтных работ составит 159 900 человек.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 год и прогноз на 2029 год, Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 года. UTI является образовательным учреждением и не может гарантировать занятость или заработную плату.
50) Бюро статистики труда США прогнозирует, что общая занятость сварщиков, резчиков, паяльщиков и паяльщиков в стране к 2029 году составит 452 500 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 год и прогнозируемый показатель 2029 года, Бюро статистики труда США, www .bls.gov, просмотрено 3 июня 2021 г.UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
51) Бюро статистики труда США прогнозирует, что общая численность занятых в стране операторов компьютерных инструментов с числовым программным управлением к 2029 году составит 141 700 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 год и прогнозируемый показатель 2029 года, Бюро статистики труда США, www.bls. gov, дата просмотра — 3 июня 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
52) Бюро статистики труда США прогнозирует, что среднегодовое количество вакансий по стране в каждой из следующих профессий в период с 2019 по 2029 год составит: Техники и механики автомобильного сервиса, 61 700; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 24 500 человек; и сварщики, резаки, паяльщики и паяльщики — 43 400 человек.Вакансии включают вакансии, связанные с чистым изменением занятости и чистым замещением. См. Таблицу 1.10. Временные увольнения и вакансии, прогнозируемые на 2019–29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
53) Расчетная годовая средняя заработная плата специалистов по ремонту автомобилей и связанных с ними ремонтных работ в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2020 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.Достижения выпускников UTI могут быть разными. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. Заработная плата начального уровня может быть ниже. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например оценщика, оценщика и инспектора.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, занятых в качестве ремонтников автомобилей и связанных с ними ремонтных работ (49-3021) в Содружестве Массачусетса, составляет от 30 765 до 34 075 долларов (Массачусетс по труду и развитию рабочей силы, данные за май 2019 г., просмотрено 2 июня 2021 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованная в мае 2021 года, составляет 23 доллара.40. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 17,94 и 13,99 долларов соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2020 г., Авторемонтные предприятия и соответствующие ремонтные предприятия, просмотр 2 июня 2021 г.)
Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.
Смазочные материалы для дизельных двигателей
Смазочные материалы для дизельных двигателейХанну Яэскеляйнен, В. Адди Маевски
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Смазочные материалы для дизельных двигателей состоят из базового масла, модификатора вязкости и пакета присадок, который может включать антиоксиданты, депрессанты температуры застывания, детергенты и диспергенты.Вязкость моторного масла — его важнейшее свойство. Вязкость масла следует выбирать так, чтобы гидродинамическое смазывание происходило там и тогда, когда это необходимо. Во время использования масло может загрязняться сажей, несгоревшим топливом, металлическими частицами и другими загрязнителями. Распространенный способ определения подходящих интервалов замены масла — анализ отработанного масла.
Состав смазки
Обзор
Смазочные масла в дизельном двигателе выполняют ряд важных функций:
- Снижение износа таких компонентов, как подшипники, поршни, поршневые кольца, гильзы цилиндров и клапанный механизм,
- Снижение трения граничных и гидродинамически смазываемых компонентов,
- Охлаждение поршня,
- Защита от коррозии из-за кислот и влаги,
- Очистка поршней и предотвращение скопления шлама на внутренних поверхностях,
- Поддержание смазки уплотнений и контроль набухания для предотвращения утечки из-за неисправности уплотнения и
- Служит гидравлической средой в таких компонентах, как топливные системы HEUI.
Смазочные материалы для двигателей состоят из базового масла (обычно 75–83%), модификатора вязкости (5–8%) и пакета присадок (12–18%) [1265] . Поскольку базовое масло само по себе не может обеспечить все функции смазочного масла, необходимые в современных двигателях, пакет присадок стал играть все более важную роль в рецептуре масла.
Базовое масло
Базовое масло состоит из базового компонента или смеси ряда базовых компонентов. Базовые компоненты из нефтяного сырья могут быть произведены с использованием множества различных процессов, включая дистилляцию, очистку растворителем, обработку водородом, олигомеризацию, этерификацию и повторную очистку.Синтез с использованием процесса Фишера-Тропша также может быть использован для производства некоторых высококачественных базовых компонентов из исходного сырья, такого как природный газ (GTL). Биосинтез также можно использовать для производства базовых компонентов из возобновляемых источников сырья, таких как растительный сахар [3229] . Базовые запасы также могут быть восстановлены при переработке отработанного масла.
Американский институт нефти (API) классифицирует базовые компоненты моторных масел, имеющих лицензию на нанесение классификационного символа API, на несколько различных категорий, как показано в таблице 1.В Европе Европейская ассоциация производителей смазочных материалов (ATIEL) определяет группы базовых масел для использования в последовательностях масел ACEA. Классификации ATIEL Group I-V идентичны классификациям API (однако между 2003 и 2010 годами ATIEL включила дополнительную классификацию Group VI).
Группа | Насыщенные вещества | Сера | Индекс вязкости | Прочие | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
мин. | макс. | мин. | макс. | мин. | макс. | 0.03% * | — | 80 | 120 | |||||
II | 90% | — | — | 0,03% | 80 | 120 | — | 0,03% | 120 | — | ||||
IV | — | — | — | — | — | — | поли | — | — | — | — | — | — | не в группах с I по IV |
* Максимум 90% насыщенности и / или минимум 0.03% серы |
Базовые компоненты групп I, II и III различаются по концентрации насыщенных углеводородов и серы, а также по их индексу вязкости (см. Ниже). Базовые компоненты группы I имеют низкое содержание насыщенных углеводородов и / или высокое содержание серы. Группы II и III содержат много насыщенных и мало серы. Базовые масла группы IV — это синтетические масла, состоящие из полиальфаолефинов. Наконец, базовые компоненты Группы V — это те, которые не попадают в Группы I-IV. Базовые масла Группы I и Группы II с индексом вязкости выше 110 иногда называют базовыми маслами Группы I + и Группы II + соответственно.Более широкое использование базовых масел Группы III также привело к аналогичной дифференциации для этих продуктов. Однако различие менее четкое. Базовые масла группы III + могут использоваться для обозначения базовых масел с индексом вязкости более 130-150 в зависимости от продавца.
Базовые масла группы I — это базовые масла самого низкого качества. Они производятся путем физического разделения молекул смазочного материала с использованием рафинирования растворителем; двухэтапный процесс, включающий частичное удаление ароматических углеводородов с помощью растворителя и последующее удаление парафина осаждением и другим растворителем.Базовые компоненты группы I могут все еще содержать более 10% ароматических углеводородов, что придает этим базовым маслам без добавок плохую стойкость к окислению, а их вязкость — плохой температурный отклик. Необходимо использовать специальную сырую нефть, которая содержит желаемые молекулы базового масла смазочного материала, так что характеристики базового масла Группы I сильно зависят от источника сырой нефти.
Базовые компоненты группы II производятся с использованием различных технологий гидрообработки. На модернизированных или гибридных установках Группы II к установкам Группы I добавляется стадия гидроочистки, что позволяет повысить гибкость выбора сырой нефти по сравнению с базовыми маслами Группы I.В специально построенной установке гидрокрекинга Группы II каталитические процессы преобразуют молекулы, не являющиеся смазочными материалами, в молекулы смазочных материалов, что обеспечивает еще большую гибкость исходного сырья и позволяет использовать более низкое качество / более дешевую сырую нефть. При производстве базовых компонентов группы II можно удалить значительное количество азот- и серосодержащих соединений и ароматических углеводородов. Это обеспечивает превосходное базовое сырье по сравнению с базовыми маслами Группы I. Базовые компоненты группы II более инертны и образуют меньше продуктов окисления. Поскольку исходные молекулы базового сырья Группы II подвергаются крекингу и изменяют форму, свойства продукта в меньшей степени зависят от источника сырой нефти.
Базовые компоненты группы III производятся почти так же, как базовые компоненты группы II, но с использованием более высоких температур или более длительного времени пребывания в реакторе. Это дает им значительно улучшенные температурные характеристики. Базовые компоненты, производные от газа до жидкости (GTL), относятся к Группе III. Базовые компоненты группы III + также могут быть биосинтезированы [3229] .
Стремление повысить экономию топлива и сократить выбросы в автомобильной промышленности привело к сокращению использования базовых масел Группы I и увеличению использования базовых масел Группы II и III.Повышенная доступность этих высококачественных базовых масел открыла для базовых масел Группы II новые области применения, помимо тех, которые были созданы из-за потребности в более качественных автомобильных смазочных материалах. Например, переход на смазочные материалы, созданные на основе базовых масел Группы II для судовых поршневых двигателей, может помочь снизить затраты на техническое обслуживание и эксплуатацию [3352] .
Базовые компоненты группы IV традиционно называются «синтетическими» базовыми маслами. Эти полиальфаолефины (ПАО) полимеризуются из более мелких молекул.На момент своего появления они были самыми эффективными из доступных базовых масел. По мере роста спроса производители начали использовать сырье с высоким индексом вязкости для производства минеральных масел, соответствующих характеристикам ПАО. Эти базовые компоненты Группы III соответствовали характеристикам PAO, но при более низкой стоимости. В Северной Америке базовые компоненты Группы III также могут называться «синтетическими» [464] . Биосинтезированные базовые компоненты ПАО также были разработаны [3229] . ПАО с низкой вязкостью, используемые в сочетании с базовыми маслами Группы III, предлагают инструмент для получения составов моторных масел с низкой вязкостью для повышения экономии топлива при сохранении приемлемых характеристик летучести масла, рис. 1 [3216] .
Рисунок 1 . Пример того, как ПАО могут быть использованы для расширения базовых масел Группы III для достижения требований вязкости и летучести 0W-30.(Источник: ExxonMobil Chemical)
Базовые компоненты группы V включают полиалкиленгликоли (PAG), алкилированные нафталины (AN) и сложные эфиры, такие как сложные эфиры полиолов (сложные эфиры пентаэритрита и сложные эфиры триметилолпропана) и ароматические сложные эфиры (фталаты и тримеллитаты). Новые жидкости, такие как смешивающиеся с маслом ионные жидкости, также продолжают разрабатываться [2442] .Эти синтетические базовые масла могут обладать различными свойствами, которые делают их привлекательными для определенных областей применения:
- полярные базовые компоненты обладают улучшенными свойствами, традиционно обеспечиваемыми добавками, и могут снизить количество требуемых добавок,
- более высокая термическая стабильность может расширить диапазон рабочих температур на 50-100 ° C,
- высокая прочность пленки и повышенная смазывающая способность могут снизить потребление энергии в некоторых областях применения,
- некоторые из них являются биоразлагаемыми и имеют низкую токсичность для окружающей среды.
###
.